CSE 2600
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall

This week

* In-person demos required for some credit on nearly all remaining
assignments

 Exam 1: Should be returned by Saturday

 HwW#5A posted tonight

RISC-V Edition of book!
RISC-V in the news...
(And FPGA stuff too)

https://www.tomshardware.com/pc-components/gpus/startup-claims-its-zeus-gpu-is-10x-faster-than-nvidias-rtx-5090-bolts-first-gpu-coming-in-2026
https://actu.epfl.ch/news/cracking-a-long-standing-weakness-in-a-classic-alg/

Studio 4B Review & Ch 5

https://washu-cse2600-fl25.github.io/studios/studio04b

Studio 4B

* Full-Adder: Behavioral variations in simulation
* iCE40 Mapping

e Full-Adder: Column of number

JLS Example: 1111+0001

Wikipedia Animation

https://en.wikipedia.org/wiki/Adder_(electronics)#/media/File:RippleCarry2.gif

Ripple Adder

« Example: 1111 + 0001

A © *
B o "
* As a traditional math problem: ¢, o . °S
Carry-block |
| Te
1111 —_)—1 Cout
+0001 -

Info In circuit

<= Carry i-1 connected to carry in of i
<= “A”
<= “B”

<= “Sumll

Info In circuit: Initial

 As values in a circuit:

0 000 <=Carryi-1 connected to carry in of i
1111 <="A”
0001 <="“B”

Info in circuit: After 1st “Sum” update

e As values in a circuit:

0010 <=Carryi-1 connected to carry in of i
1111 <=“A”
0001 <="“B”

1110 <=“Sum"

Info in circuit: After 2nd “Sum” update

 As values in a circuit:

0110 <=Carryi-1 connected to carry in of i
1111 <=“A”
0001 <="“B”

1100 <= “Sum"

Info in circuit: After 3rd “Sum” update

 As values in a circuit:

1110 <=Carryi-1connected to carry in of i
1111 <="A”
0001 <="B”

1000 <= “Sum"

Info in circuit: After 3rd “Sum” update

 As values in a circuit:

1110 <=Carryi-1connected to carry in of i
1111 <="A”
0001 <="B”

0000 <=“Sum"

Ripple Adder: Total Time

« N bits: Worst case scenario is ripple through all A/

- If 7/, is the propagation delay through the Carry
=N-T

(¢

» Dictates things like maximum clock cycle for any paths/loops that use
addition

* Lots of things rely on addition!

Studio 4B: Structural Ripple-Carry Adder
(And Generate Statement)
(And Hardware)

Studio 4B: State Machines

Divide by 3 Counter

Verilog FSMs

* Three parts

* Next state logic
(arrows / next state table)

» State register (active bubble)

* Output logic (output equations)

Moore FSM
CLK
M next next k
; tat tput
inputs ,Sct,ztli K state m state I Olggﬁg }Foutputs
Mealy FSM
CLK
. M next next k
inputs + Iségi’ state Fﬁ state °|gtgF:gt outputs

Verilog

module divideby3FSM(input 1logic clk,
input logic reset,
output logic q);
{pedef enum logic [1:0] {50, S1, 52} statetype;
atetype state, nextstate;

// state register

always ff @ osed%e clk posedge reset)
1f (reset) state <=
else state <= nextstate,

// next state logic
always comb

case (state)
50 nextstate = 51; M
S1: nextstate = S2; inputs
S2: nextstate = S0O;
default: nextstate = SO;

endcase

// output logic
assign q = (st

ate == S0);
endmodule

Chapter 5

Goal...and pattern...

https://en.wikipedia.org/wiki/ENIAC

X=Y+Z2
(Using variables)

X=Y-2Z
(Using variables)

X=Y<Z
(Using variables)

X=Y&Z
(Using variables)

Aside: Better (faster) Addition

Carry Look-Ahead

 Divide large addition into #-bit blocks

* Within each block, determine what each column would do with a carry-in to
the column
? <=Carryin

« Would it “Generate” a carry? (2,) a <= “A,,
+b <=“B

« Would it merely “Propagate” the carry? (2,) s <=“Sum"

« Can the carry-out be represented in terms of @, b, cin,, 2, and p,?

Extending Concept:

Building a Block (of 4)
VDT 1 T
1-bit 1-bit 1-bit 1-bit

full full < full € full
adder adder adder adder
SIREERENIREN
P3 g3 P2 92 (2 P1 01 C: po go
‘CT 4-bit carry look-ahead PG GG

‘o

Extend “prediction” to block

A3 B3 A2 B2 A1 B: Ao Bo
S I A A I I
1-bit 1-bit 1-bit 1-bit

full full full full |2
adder adder adder adder

N

A

S
\ AR Y V¥ y ° Y V¥
P393 C3 P292 C2 P191 C1 PoQo
C{ 4 4-bit carry look-ahead PG GG|©
1D o /n 1D /n /n
“hlock = 43 424 " 4

/ ‘ / / 1D 71D
@b;'/&kfl‘é — @33 r L %y * (@2 r (H‘Z . \(1

Block “Prediction”

B A, B, A, B, A, B, A,
| | | [N | | A | |

VG G Y H \/ %C

+ + + x /o
S; S, S, So

Gao G,

F)3

G,

P,

Bits of A & B arrive
9 111 0111

YCZ\/‘”V/i\\/%C

S, s,
Gao G,0
Py
G,!

P

Ripple in 4 block, 16-bit CLA

oao

a0

Ripple vs. CLA

* Ripple

 Propagation delay is \V, - 7

N, is the number of bits ; '/ is the propagation delay of the carry
« CLA

+ Propagation delay is \/,, - 7/,

» N, is the number of blocks; !/, is the propagation delay of an and+or

)\
o N, < N. (usually the size, where & > 2)
— ﬁ/(‘

Trade off: Logic vs. Time

* CLA and other tricks (Prefix adder) add logic to reduce time
» Degenerate case: A look-up table (full sum-of-products equation)
« How many layers of logic? (nots, ands, ors)?

* To estimate complexity, how many rows and output columns are in a table to add
two, 8-bit numbers?

« Approximately how many AND gates?
Approximately how many OR gates?
Estimate the number of inputs that may be needed on OR gates

Subtraction

* The beauty of 2’s complement

e A== A 4 554 \

Subtraction

* The beauty of 2’s complement

e A=B=A4+B+1 \

Comparisons

* Equality

e Easy: Are any bits different? - -
y y o : — Equal

A1
* Equal to zero? B, j
=hes
BO

Comparisons

e Less than (signed): Is A<B?
* Leverage Subtraction: A<B is equivalent to A-B<0
e Subtract and check result
e General: Is A-B negative?

e But...large numbers can “overflow”.
Need to consider overflow and signs of A & B

ALU: Arithmetic Logic Unit

« “Heart” of CPU: Does the computation stuff.

» Basic operations

A B
« Addition * N
* Subtraction
o ALUControl
* Bitwise AND ALU
» Bitwise OR

« Comparison (<) Result

ALU: Arithmetic Logic Unit

« “Heart” of CPU: Does the computation stuff.

AN [N-1) AN AN

* Basic operations By
A (N-1)

ALUControl, Sum,., ALUControl,
. Addition: 000 : §7
N
- o

e Subtraction: 001 >
N S

. Bitwise AND: 010 Y L 5
TeTioum °

Bitwise OR: 011 °Ve’"°w '

e

101 011 010 001 000
— ALUControl,.,

N
Result

Comparison (<): 101

Other Operations: Shift Left (one place)

. 25 L 24; dL 2-_’ dL 2 = 54{' Value 0O 0 1 1 0 1 1 0
Place ;56 05 04 03 02 o1 20
Value
~)0) | ~)S)Y L. ML O\
® L5 aF 2~ aF £ 1r'£—“u0

Value 0 1 1 o 1 1 0 0

Place ;6 95 04 03 22 21 o0
Value

Shifting (unsigned / co width)

* Left u bits: Equivalent to multiplication by 2"

* Multiplication algorithm is a mix of addition and multiplication by b*

* Right # bits: Equivalent to division by 2 and truncation

Other Uses of Shifting
(Serial Communication)
& State Machines

LED & Key

https://github.com/digital-logic-and-computer-design/ice40-ledandkey

Memory

Memory / Storage

« Common types
« Static Random Access Memory (SRAM)
 Dynamic Random Access Memory

 Read Only Memory (contents can’t be easily changed)

Memory / Storage

* General Approach
» Store in a 2D grid of elements
« Call each row a “word”

 Each row has an index to access the content of the entire row

Memory Structure

2:4
Decoder bitline, bitline, bitline,
wordline,
11 \ \ \
Address stored | || stored | || stored | |
* One approach — wording, LBit=0] |[bit=1] | |bit=0
10 \ I \
stored | || stored | || stored | |
H 1] ” ; bit = 1 bit=0 bit=0
* Bits are “enabled” to connect o1 | Wordines = ‘ ‘
i stored | || stored | || stored | |
to shared output line I i o it o Pl
00 . ‘ \ \
stored | || stored | || stored | |
bit=0 bit = 1 bit = 1

Data, Data, Data,

Memory / Storage

* Concept: Computer programming
* An Array (List) is a representation of memory
 “Random” : Largely about time to access

* The “random” means the location doesn’t have much impact on access
time

* Vs. “Sequential”

RAM Memory Structure

* One approach

e Bits are “enabled” to connect
to shared output line

Address ——

2:4

Decoder

11

10

01

00

bitline, bitline, bitline,
wordline,
stored | || stored | || stored | |
wordline, bit =0 bit = 1 bit =0
[\ [
stored | || stored | || stored | |
Wordline1 bit=1 bit=0 bit=0
\ \ \
stored | || stored | || stored | |
wordline, bit = 1 bit = 1 bit=0
\ \ \
stored | || stored | || stored | |
bit=0 bit = 1 bit = 1
Data, Data, Data,

Vs. A Sequential Example

https://en.wikipedia.org/wiki/Reel-to-reel_audio_tape_recording

RAM: SRAM vs. DRAM

https://www.youtube.com/watch?v=0rNEtAz3wJQ

SRAM vs. DRAM

« S = “Static”/Unchanging (well, only changing when requested!)

* Could be built from D Flip Flops (but similar “self-reinforcing” circuits more likely)
* D = Dynamic: Values fade if not refreshed
* RAM: “Random Access”

* About performance of reading/updating

* Time take (propagation delay) does not depend on index requested

ROM

* Read Only
* But still “Random Access” performance
* Fixed look-up table. Could be built with combinational logic!

 Earlier example of “adder” could just be a ROM

Reading Memory

N
« M = Word size Address Array

* N = “address size”

« How many total bits are stored? % M
Data

ALU Operations

Context: X=Y+Z
* We need places to hold Y, Z, and X.
Need TWO inputs:

* need a memory structure that provides 2 values
(l.e. dual output ports)

The “Register File”

Also supports writing (updating)

1 11

CI|_K |
WE3
A1 RD1
A2 RD2
A3
Register
WD3 File

ofel

JLS Register File
(W/ D Flip Flops)

Verilog: RISC-V Register File

// 32 x 32 register file with 2 read, 1 write port

module regfile (input logic clk,
input logic we3,
input logic [4:0] ral, ra2, wa3,

input logic [31:0] wd3,
output logic [31:0] rdl, rd2);

logic [31:0] rf[31:07];

always ff @ (posedge clk)
if (we3) rfl[wa3l] <= wd3;

assign rdl = rflrall];
assign rd2 = rfl[ral]l;
endmodule

Big Picture: add x, y, z

19:15

24:20

11:7

Cll_K ‘

WE3
A1 RD1
A2 RD2
A3

Register
WD3 "File

SrcA [\I\

ALU

Zero

ALURes!I

0 |SrcB

FPGA

* Field Programmable
« Gate Array

» Lattice iCE40 UP5k: Architecture Overview

RAMs, (Dual and Single Port)

Look Up Tables (LUTs): 4 inputs

D Flip Flops

Lots: ~5,000

Questions

* Chapter fits well with 3601
* Wait until next chapter...

 Why so many memory types / what are the differences?
* Evolution over time

» Different needs: Capacity vs. Need — the memory hierarchy

https://en.wikipedia.org/wiki/Memory_hierarchy

Questions

 PLA vs. FPGA
* PLA: (largely) 2-level logic / simple combinational logic

« FPGA: Array of many proarammable blocks with programmable
interconnects

» Can efficiently achieve more than 2-layer logic

 Memory/storage is inherent (can do full state machine...see hw 4b)

https://www.eeeguide.com/programmable-array-logic-pal/
https://www.latticesemi.com/en/What-is-an-FPGA
https://www.latticesemi.com/en/What-is-an-FPGA

