CSE 2600
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall

This week

* In-person demos required for some credit on nearly all remaining
assignments

« Exam 1: Should be returned by Saturday

 Hw#5A posted tonight

RISC-V Edition of book!
RISC-V in the news...

(And FPGA stuff too)

https://www.tomshardware.com/pc-components/gpus/startup-claims-its-zeus-gpu-is-10x-faster-than-nvidias-rtx-5090-bolts-first-gpu-coming-in-2026
https://actu.epfl.ch/news/cracking-a-long-standing-weakness-in-a-classic-alg/

Studio 4B Review & Ch 5

https://washu-cse2600-fl25.github.io/studios/studio04b

Studio 4B

 Full-Adder: Behavioral variations in simulation

* iCE40 Mapping

 Full-Adder: Column of number

JLS Example: 1111+0001

Wikipedia Animation

https://en.wikipedia.org/wiki/Adder_(electronics)#/media/File:RippleCarry2.gif

Ripple Adder

e Example: 1111 + 0001

* As a traditional math problem:

Info In circuit

<= “A”

Info In circuit: Initial

e As values in a circuit:

0000 <=Carryi-1 connected to carry in of i
1 1 1 = A
00O == e

0O000 <=“Sum"

Info in circuit: After 1st “Sum” update

e As values in a circuit:

00 O <=Carryi-1 connected to carry in of i
111 1 <—wAs
+ 070N 081 B
<= “Sumll

Info in circuit: After 2nd “Sum?” update

e As values in a circuit:

O ' 1 0 <=Carryi-1 connected to carry in of i
1 1 1 = A
+ 000 1 = 2

0 <= “Sum"

Info in circuit: After 3rd “Sum” update

e As values in a circuit:

110 <=Carryi-1 connected to carry in of i
11 1 = A
00 1 == e

00 <= “Sum"

Info in circuit: After 3rd “Sum” update

e As values in a circuit:
1110 <=Carryi-1connected to carry in of i
1 1 1 = A
000O01 = 2

00O <= “Sum"

Ripple Adder: Total Time

« NV bits: Worst case scenario is ripple through all Vv

- If T, is the propagation delay through the Carry
= N T,

* Dictates things like maximum clock cycle for any paths/loops that use
addition

e Lots of things rely on addition!

Studio 4B: Structural Ripple-Carry Adder
(And Generate Statement)
(And Hardware)

Studio 4B: State Machines

Divide by 3 Counter

S2,

©

Verilog FSMs

* Three parts

* Next state logic
(arrows / next state table)

» State register (active bubble)

e Output logic (output equations)

inputs

M

next
state
logic

next
state
logic

Moore FSM

k next

k

state

CLK

K N
state | output
logic outputs

Mealy FSM

next
state

CLK
K

module divideby3FSM(input
input
output

¥pedef enum logic [1:0
atetype state, nextst

ml_l

// state register
always ff @%

1T (reset) state <= SO

else state <= nextstate

1/ e sreiee leogile
always comb

case (state)
SO : nextstate
S1: nextstate
S nextstate
default: nextstate
endcase

/e OUEPUE IO RIG
assign q = (st
endmodule

I I

ate == S0) ;

Verilog

S1, S2} statetype @

osedge clk, posedge reset)

Chapter 5

Goal...and pattern...

o

BE i e i e]

i -F - S e ‘:: -y
LT

N WL S0 o SN T Gl

f

https://en.wikipedia.org/wiki/ENIAC

W=\ 4 A
(Using variables)

W=\ =
(Using variables)

W=\ & A
(Using variables)

X=Y&Z
(Using variables)

Aside: Better (faster) Addition

Carry Look-Ahead

e Divide large addition into 72-bit blocks

* Within each block, determine what each column would do with a carry-in to

the column
? <=Carryin
« Would it “Generate” a carry? al <==Ax
ry (gx) + b <= “B”
« Would it merely “Propagate” the carry? (p,) _s_ s oum"

« Can the carry-out be represented in terms of a,, b,, cin,, g.and p.?

) X’

Extending Concept:

R N N N I O

1-bit 1-bit 1-bit
full full full full
adder

3l

P3 g3 C3 P292 C2 P191 Ci1 PoQgo
4-bit carry look-ahead PG GG

"o

Extend “prediction” to block

A2 B2 A1 B1

P393 C3 P292 C2 P1g1 C: po go
4-bit carry look-ahead PG GG

e, = [Py < 1P 12 2 12
Guioer = G3 + P53 - (G, + (P - (P - Gy)))

Block “Prediction”

B,
|

A, B, A, B, A,
|~ | | A | |
VLV L V] g
+ + v /"
S, Sy

Bits of A & B arrive

Ripple in 4 block, 16-bit CLA

Ripple vs. CLA

* Ripple

 Propagation delay is IV, - T,

« N, is the number of bits ; 7. is the propagation delay of the carry
- CLA

 Propagation delay is Ng; - T,

« Np; is the number of blocks; T, , is the propagation delay of an and+or

1
« Np; < N. (usually % the size, where k > 2)

Trade off: Logic vs. Time

* CLA and other tricks (Prefix adder) add logic to reduce time
* Degenerate case: A look-up table (full sum-of-products equation)
« How many layers of logic? (nots, ands, ors)?

* To estimate complexity, how many rows and output columns are in a table to add
two, 8-bit numbers?

* Approximately how many AND gates?
Approximately how many OR gates?
Estimate the number of inputs that may be needed on OR gates

Subtraction

* The beauty of 2’s complement

« A — B = At B

Subtraction

* The beauty of 2’s complement

O A\ =B = A qF

Comparisons

e Equality
e Easy: Are any bits different?

 Equal to zero?

O

Comparisons

e Less than (signed): Is A<B?
e Leverage Subtraction: A<B is equivalent to A-B<0
« Subtract and check result

e General: Is A-B negative?

e But...large numbers can “overflow”.
Need to consider overflow and signs of A & B

ALU: Arithmetic Logic Unit

« “Heart” of CPU: Does the computation stuff.
* Basic operations
* Addition
» Subtraction
* Bitwise AND
- Bitwise OR N

» Comparison (<) Result

ALUControl

ALU: Arithmetic Logic Unit

« “Heart” of CPU: Does the computation stuff.

» Basic operations By

ALUControl,
4

e Addition: (0]0]0]

Subtraction: 001

YosuoonNTVY

Bitwise AND: 010

Bitwise OR: 011

Comparison (<): 101 v v
101 011 010 001 000
\ /»l-—ALUControlzﬂ

N
Result

Other Operations: Shift Left (one place)

Cﬁﬁi DA o0 51 o0

6095 53 a0
v ZPap 2 ap 27 A 2 = 10K vablee @ 1 1t 8 1 1 0 0

Place
Value

20 20 2o PN P P2 D 20

Shifting (unsigned / co width)

« Left n bits: Equivalent to multiplication by 2"
* Multiplication algorithm is a mix of addition and multiplication by b~
0 =g 123 ¢ 112

. Ex: 1011, % 11,

 Right 7 bits: Equivalent to division by 2" and truncation

Other Uses of Shifting
(Serial Communication)
& State Machines

LED & Key

https://github.com/digital-logic-and-computer-design/ice40-ledandkey

Memory

Memory / Storage

« Common types
« Static Random Access Memory (SRAM)

 Dynamic Random Access Memory

 Read Only Memory (contents can’t be easily changed)

Memory / Storage

e General Approach
» Store in a 2D grid of elements

e Call each row a “word”

e Each row has an index to access the content of the entire row

Memory Structure

* One approach

e Bits are “enabled” to connect
to shared output line

Address ——

2:4

Decoder

11

wordlineg

bitline,

bitline,

bitline,

wordline,

stored
bit=0

stored
bit = 1

stored
bit=0

wordline,

stored
bit = 1

stored
bit=0

stored
bit=0

wordline,

stored
bit = 1

stored
bit = 1

stored
bit=0

stored
bit=0

stored
bit = 1

stored
bit = 1

Data,

Data,

Data,

Memory / Storage

e Concept: Computer programming
* An Array (List) is a representation of memory
« “Random” : Largely about time to access

* The “random” means the location doesn’t have much impact on access
time

* Vs. “Sequential”

RAM Memory Structure

* One approach

e Bits are “enabled” to connect
to shared output line

bitline, bitline, bitline,

stored . stored . stored
bit=0 bit = 1 bit=0

bit=0 bit=0

bit = 1

stored . stored . stored .

bit = 1 bit = 1 bit =0

stored . stored .

bit = 1

Data, Data, Data,

Vs. A Sequential Example

https://en.wikipedia.org/wiki/Reel-to-reel_audio_tape_recording

RAM: SRAM vs. DRAM

https://www.youtube.com/watch?v=0rNEtAz3wJQ

SRAM vs. DRAM

e S = “Static”’/Unchanging (well, only changing when requested!)
e Could be built from D Flip Flops (but similar “self-reinforcing” circuits more likely)
D = Dynamic: Values fade if not refreshed

e RAM: “Random Access”

* About performance of reading/updating

* Time take (propagation delay) does not depend on index requested

ROM

e Read Only
» But still “Random Access” performance

* Fixed look-up table. Could be built with combinational logic!

» Earlier example of “adder” could just be a ROM

Reading Memory

* M = Word size Address

e N = “address size”

« How many total bits are stored?

ALU Operations

Context: X=Y+Z

* We need places to hold Y, Z, and X.

Need TWO inputs:

 need a memory structure that provides 2 values

(l.e. dual output ports)

Register
WD3 File

The “Register File”

Also supports writing (updating)

JLS Register File
(W/ D Flip Flops)

Verilog: RISC-V Register File

// 32 x 32 register Tfi1e i

module regfile (input ECTEEs
input logre
input loodd
input logrie
output legie

logic [31:0] &[] " i

always If W(poccdge ol B
if (we3) rflwas|] —— wd :

assign gl = rhilegl |
a1 rd’ — BElea i
enamoduale

clk,
we3,
ral,
wad 3,
rdl,

RE

rel’)

i Wiite port

wa3s,

Big Picture: add x, y, z

CLK ‘
WE3
A1 RD1 Zero

ALUResiI

A2 RD2

A3

Register
WD3 " File

FPGA

e Field Programmable
« Gate Array

» [attice iCE40 UP5k: Architecture Overview

RAMs, (Dual and Single Port)

Look Up Tables (LUTSs): 4 inputs

D Flip Flops

Mo} CCHEISH 0 0]0

Questions

e Chapter fits well with 3601
 Wait until next chapter...
 Why so many memory types / what are the differences?

e Evolution over time

» Different needs: Capacity vs. Need — the memory hierarchy

https://en.wikipedia.org/wiki/Memory_hierarchy

Questions

 PLA vs. FPGA

 PLA: (largely) 2-level logic / simple combinational logic

« FPGA: Array of many programmable blocks with programmable
Interconnects

« Can efficiently achieve more than 2-layer logic

« Memory/storage is inherent (can do full state machine...see hw 4b)

https://www.eeeguide.com/programmable-array-logic-pal/
https://www.latticesemi.com/en/What-is-an-FPGA
https://www.latticesemi.com/en/What-is-an-FPGA

