
CSE 2600
Intro. To Digital Logic & Computer Design

Bill Siever
&

Michael Hall

This week

• Hw 4A requires an in-person demo (during office hours) for full credit

• All remaining Hw are likely to require in-person demos

• Office hours update:

• Monday 5-7pm room changed to Jubel 121

• Hw 4B will be posted today / drop boxes by Thursday

Chapter 4

Review: HDLs Describe Hardware

• Uses

• “Synthesis” : Transformation to real hardware

• Like compilers used for programming languages

• Simulation: Confirm modules work together

• Use modules for hierarchical design — important part of managing complexity

• Description Styles

• Structure (connect 2 input AND to …)

• Behavior (if x then y)

(System) Verilog Module: Review

module example(input logic a, b, c,
output logic y);

// module body goes here
endmodule

Input & Output
are like the Pins
On chips or in

JLS

Input & Output
are like the Pins
On chips or in

JLS

(System) Verilog

• Conditionals via Ternary operator (? :)

module mux2(input logic [3:0] d0, d1,
input logic s,
output logic [3:0] y);

assign y = s ? d1 : d0;
endmodule

Behavioral Behavioral

8-bit mux2: Hierarchical

module mux2_8(input logic [7:0] d0, d1,
input logic s,
output logic [7:0] y);

mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);
mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);

endmodule

Sequential Logic

always: Based on Events

• Concept of “event” is related to simulation and “event driven programming”

• JLS uses events: An OR gate “reacts” to events and schedules an update
See here

• Computes all activities / updates for “now”

• They cause new activities that need to be handled in the future
(at: now + prop delay). Those are put in a queue at for that time.
Ex: Update an or-gate’s output at now+4

• Move on to “now +1”, repeat

Discrete Time Event Simulator

Time
Now

+1+1 +2+2 +3+3 +4+4

Queue of updatesQueue of updates

Time is simulated in
discrete units

Time is simulated in
discrete units

• Updating values in current turn: Incrementally or all at once at end of turn

• Ex: Assume x is 1 and y is 0

• Incremental:
x = 0
y = x

• x’s final value is 0
y’s final value is 0 too

Discrete Time Event Simulator

• All at once / end of turn
x <= 0
y <= x

• x’s final value is 0
y’s final value is 1

SystemVerilog Standard

• Why all the simulation details?

• Quick intro to SystemVerilog Standard

• Section 9 / 9.2

always Statement

• Form:
always @(sensitivity list)

statement;

• When event in sensitivity list occurs, statement is executed

• Ex: always @(posedge clock)
statement;

• Verilog: Don’t use this in here

always Statement

• Form:
always @(sensitivity list)

statement;

• When event in sensitivity list occurs, statement is executed

• Verilog: Don’t use this in here

always in 2600

• Form 1: Comb logic
always_comb

statement;

• Statement(s) are (complex) combinational logic. Like if/else or case.
Updates when any (relevant/used) input changes

• Form 2: Registered (synchronous, synthesize able, sequential) logic
always_ff @(sensitivity list)

statement;

• Often @(posedge clock) used

Use blocking assignment (=)Use blocking assignment (=)

Use non-blocking assignment (<=)Use non-blocking assignment (<=)

Assignments

• Form 1: Continuous Assignment
assign var = expression;

• Continuously assigned! Largely a wired connection

• Forms 2 & 3 in Procedures (in some form of always*) :

• Blocking (=): Will be “instant” in terms of simulation

• always_comb

• Non-Blocking (<=): Will occur at end of turn all at once

• always_ff

Rules for Assignments

• Synchronous sequential logic
use always_ff @(posedge clk) and nonblocking assignments (<=)

always_ff @(posedge clk)
q <= d; // nonblocking

• Simple combinational logic
use continuous assignments (assign)

assign y = a & b;

• Complex Combinational Logic
use always_comb and blocking assignments (=)

• Assign signals in only one always or assign statement!

Verilog: D Flip-Flop

module flop(input logic clk,
input logic [3:0] d,
output logic [3:0] q);

always_ff @(posedge clk)
q <= d; // pronounced “q gets d”

endmodule

Resettable D-Flip-Flop 1

module flopr(input logic clk,
input logic reset,
input logic [3:0] d,
output logic [3:0] q);

always_ff @(posedge clk)
if (reset) q <= 4'b0;
else q <= d;

endmodule

Resettable D-Flip-Flop 2

module flopr(input logic clk,
input logic reset,
input logic [3:0] d,
output logic [3:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 4'b0;
else q <= d;

endmodule

Resettable D-Flip-Flop 3

module flopr(input logic clk,
input logic reset,
input logic en,
input logic [3:0] d,
output logic [3:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 4'b0;
else if (en) q <= d;

endmodule

always and Combinational Logic

always_comb
begin

y = a & b
…

end

Block of
assignments

Block of
assignments

Could have been
done with individual

assigns

Could have been
done with individual

assigns

Notice = (“blocking assignment”),
not <= (“non-blocking assignment”)
Notice = (“blocking assignment”),

not <= (“non-blocking assignment”)

always_comb has nice features

• case : Selection between several options
Great for state machines!

• Must describe all possible combinations to be comb logic. Use default

case (state)
soap: hot = 1;
highPressureWarm: hot = 1;
…
default: hot = 0;

endcase

Verilog FSMs

• Three parts

• Next state logic
(arrows / next state table)

• State register (active bubble)

• Output logic (output equations)

Divide by 3 Counter

Verilog

module divideby3FSM(input logic clk,
input logic reset,
output logic q);

typedef enum logic [1:0] {S0, S1, S2} statetype;
statetype state, nextstate;

// state register
always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;
else state <= nextstate;

// next state logic
always_comb
case (state)

S0: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S0;
default: nextstate = S0;

endcase

// output logic
assign q = (state == S0);

endmodule

Parameterized Modules: Declaration

• Way to specify additional details for an instance of a generic part

• Commonly the “width” of the part

module mux2
#(parameter width = 8) // name and default value
(input logic [width-1:0] d0, d1,
input logic s,
output logic [width-1:0] y);

assign y = s ? d1 : d0;
endmodule

Parameterized Modules: Use

• Default or specify parameter for instance:

mux2 myMux(d0, d1, s, out);

mux2 #(12) lowmux(d0, d1, s, out);

Ports: Positional vs. Named

• Default or specify parameter for instance:

logic a, b, see, y
mux2 myMux(a, b, sel, y);

vs.
mux2 myMux(.d0(a), .d1(b),

.s(sel), .out(y));

module mux2
#(parameter width = 8)
(input logic [width-1:0] d0, d1,
input logic s,
output logic [width-1:0] y);

assign y = s ? d1 : d0;
endmodule

Test Bench: Overview & Concept
(Simple w/ Asserts)

Hw4A: simple_comb_tb

FPGA: Field Programmable Gate Array

FPGA

• Field Programmable

• Gate Array

• Lattice iCE40 UP5k: Architecture Overview

• RAMs, (Dual and Single Port)

• Look Up Tables (LUTs): 4 inputs

• D Flip Flops

• Lots: ~5,000

Playground: Combinational logic,
hardware, synthesis, and parameters

Examples

• Leds assignment(s)

• Using keys and assign / logic

• Spinner module

• Adjusting parameters

• Multiple spinners

Studio / Hw

• Hw4B posted tonight

• Studio: Bring hardware kit + cable!

Questions

• How advanced can you design hardware in Verilog? Is there a point where it will break?

• How does the nonblocking assignments work? (I know they are done concurrently, but it is not
obvious to me how this translates into sequential logic)

• I’m still unclear how SystemVerilog “runs” compared to normal software—since hardware
updates concurrently, but code is written line-by-line, how should I think about blocking = vs
non-blocking <= in practice?

• The difference between wire, logic, and net is confusing, not sure what is meant by driver.

• Is it okay to think of parametrized modules like functions in a programming language, or is that
not a very good analogy?

