CSE 2600
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall



This week

- Hw 4A requires an in-person demo (during office hours) for full credit
- All remaining Hw are likely to require in-person demos

- Office hours update:

- Monday 5-7pm room changed to Jubel 121

- Hw 4B will be posted today / drop boxes by Thursday



Chapter 4



Review: HDLs Describe Hardware

. Uses

- “Synthesis” : Transformation to real hardware
- Like compilers used for programming languages
- Simulation: Confirm modules work together
- Use modules for hierarchical design — important part of managing complexity
- Description Styles
- Structure (connect 2 input AND to ...)

- Behavior (if x then y)



(System) Verilog Module: Review

SystemVerilog
Module Y

module example (1nput 1logic a, b, c, Input & Output
are like the Pins
On chips or in

output logic vVy);
// module body goes here
endmodule




(System) Verilog

s =
H T H M
- Conditionals via Ternary operator (? :) e
d1[3:0] B

VBW

module muxZ2 (input logic [3:0] dO0, di,

input logic Sy
output logic [3:0] vy); Behavioral
assj_gn V=8 ? dl do;

endmodule



8-bit mux2: Hierarchical

module mux2 8 (input
input

logic
logic

output logic

muxZ2 lsbmux (dO[3:
mux2 msbmux (dO[7/:
endmodule

[7:0]

[7:0]

do,

Sy

y) s

’

[[do[7:0]—dmmr

.E

—— g

dl,

mux2

d0[3:0]  y[3:0] el y[7:0)

' d1[3:0]

Isbmux

mux2

il (0[3:0]  y[3:0] e

el (11[3:0]

msbmux




Sequential Logic



always: Based on Events

- Concept of “event” is related to simulation and “event driven programming”

- JLS uses events: An OR gate “reacts” to events and schedules an update
See here



Discrete Time Event Simulator

- Computes all activities / updates for “now”

- They cause new activities that need to be handled in the future
(at: now + prop delay). Those are put in a queue at for that time.
Ex: Update an or-gate’s output at now+4

- Move on to “now +17, repeat

Queue of updates




Discrete Time Event Simulator

- Updating values in current turn: Incrementally or all at once at end of turn

- Ex: Assume xis1andyis O

- Incremental: - All at once / end of turn
x=0 x<=0
y=X y<=X

- X's final value is 0 - X's final value is O

y’s final value is 0 too y’s final value is 1



SystemVerilog Standard

- Why all the simulation details?
+ Quick intro to SystemVerilog Standard

- Section9/9.2



always Statement

- Form:
always @ (sensitivity list)
statement;
- When event in sensitivity list occurs, statement is executed

- Ex: always @(posedge clock)
statement;

- Verilog: Don’t use this in here



always Statement

- Form:

I Disensitivitylist

statement;

- When event in sensitivity list occurs, statement is executed

- Verilog: Don't use this in here




always in 2600

- Form 1. Comb logic
always_comb Use blocking assignment (=)
statement;

- Statement(s) are (complex) combinational logic. Like if/else or case.
Updates when any (relevant/used) input changes

- Form 2: Registered (synchronous, synthesize able, sequential) logic
always_ff @(sensitivity list)
statement;

- Often @(posedge clock) used Use non-blocking assignment (<=)




Assignhments

- Form 1: Continuous Assignment
assign var = expression;

- Continuously assigned! Largely a wired connection
- Forms 2 & 3 in Procedures (in some form of always*) :
- Blocking (=): Will be “instant” in terms of simulation
« always_comb
- Non-Blocking (<=): Will occur at end of turn all at once

o always_ff



Rules for Assignments

- Synchronous sequential logic
use always_ff @(posedge clk) and nonblocking assignments (<=)
always_ff @(posedge clk)
g <=d; // nonblocking

- Simple combinational logic
use continuous assignments (assign)

assigny=a & b;

- Complex Combinational Logic
use always_comb and blocking assignments (=)

- Assign signals in only one always or assign statement!



Verilog: D Flip-Flop

ok = > .
[d30] =t D[30]  Q[3:0] Fe—— q[3:0]
q[3:0]
module flop (input logic clk,

input logic [3:0] d,
output logic [3:0] q);
always ff @ (posedge clk)

q <= d; // pronounced “q gets d”

endmodule



Resettable D-Flip-Flop 1

| ck —>
[ d[3:0] : e D[3:0]  Q[3:0] il 0[3:0]
| reset — R
q[3:0]
module flopr (input logic clk,
input logic reset,

input logic [3:0] d,
output logic [3:0] qg);

always ff @ (posedge clk)
if (reset) g <= 4'b0;
else q <= d;
endmodule



Resettable D-Flip-Flop 2

| ck —>
[ d[3:0] : e D[3:0]  Q[3:0] il 0[3:0]
| reset — R
q[3:0]
module flopr (input logic clk,
input logic reset,

input logic [3:0] d,
output logic [3:0] qg);

always ff @ (posedge clk, posedge reset)
if (reset) g <= 4'b0;
else q <= d;
endmodule



Resettable D-Flip-Flop 3

@ : —t>
(430] B3} p30)  qQpaio) PEIEL gm0
[en = — E
R
_reset ]
q[3:0]
module flopr (input logic clk,
input logic reset,
input logic en,

input logic [3:0] d,
output logic [3:0] q);

always ff @ (posedge clk, posedge reset)
if (reset) qg <= 4'b0;
else if (en) g <= d;
endmodule



always and Combinational Logic

Block of

assignments

always comb
Could have been
done with individual
assigns

Notice = (“blocking assignment”),
not <= (“non-blocking assignment”)



always_comb has nice features

« case : Selection between several options
Great for state machines!

- Must describe all possible combinations to be comb logic. Use default

case (state)
soap: hot = 1;
highPressureWarm: hot = 1;

default: hot = 0;
endcase



Verilog FSMs

- Three parts

- Next state logic
(arrows / next state table)

. State register (active bubble)

- Output logic (output equations)

Moore FSM
CLK
. M next Yk e k
inputs T@ state m state I Olgz;gt I outputs
Mealy FSM
CLK
' M it next k
inputs +— fé:fﬁ , state m she "Iztgplgt outputs




Divide by 3 Counter




module divideby3FSM(input logic clk,
input logic reset,
output logic q);

typedef enum logic [1:0] {SO, S1, S2} statetype;

statetype state, nextstate;

// state reglster

always_f @(posed%e clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

// next state logic
always_comb
case (state)
SO: nextstate =S1;
S1: nextstate =S2;
S2: nextstate = SO;
default: nextstate = SO;
endcase

// output logic
assign q = (state == S0);
endmodule

Verilog

inputs

M

next
state
logic

next
4 state

CLK

’?ﬁ k { ]N
state | output
logic outputs




Parameterized Modules: Declaration

- Way to specify additional details for an instance of a generic part

- Commonly the “width” of the part

module mux2
#(parameter width = 8) // name and default value
(input logic [width-1:0] dO, d1,
input logic S,
output logic [width-1:0] y);
assigny=s?d1l:do;
endmodule



Parameterized Modules: Use

- Default or specify parameter for instance:

mux2 myMux (dO, dl, s, out);

mux2 #(12) lowmux (dO, dl, s, out):



Ports: Positional vs. Named

- Default or specify parameter for instance:

logic a, b, see, y

muxZ2 myMux (a, b, sel, vy);
VS.

muxZ2 myMux(.dO0 (a), .dl(b),

.S (sel), .out(y));

module mux2
#(parameter width = 8)
(input logic [width-1:0] dO, d1,
input logic S,
output logic [width-1:0] y);
assigny=s?d1:dO;
endmodule



Test Bench: Overview & Concept
(Simple w/ Asserts)



Hw4A: simple comb tb



FPGA: Field Programmable Gate Array



FPGA

- Field Programmable
- Gate Array

. Lattice iCE40 UP5k: Architecture Overview

- RAMSs, (Dual and Single Port)
- Look Up Tables (LUTs): 4 inputs
- D Flip Flops

- Lots: ~5,000



Playground: Combinational logic,
hardware, synthesis, and parameters



Examples

- Leds assignment(s)

- Using keys and assign / logic
« Spinner module

- Adjusting parameters

- Multiple spinners



Studio / Hw

- Hw4B posted tonight

. Studio: Bring hardware kit + cable!



Questions

How advanced can you design hardware in Verilog? Is there a point where it will break?

How does the nonblocking assignments work? (I know they are done concurrently, but it is not
obvious to me how this translates into sequential logic)

I’'m still unclear how SystemVerilog “runs” compared to normal software—since hardware
updates concurrently, but code is written line-by-line, how should | think about blocking = vs
non-blocking <= in practice?

- The difference between wire, logic, and net is confusing, not sure what is meant by driver.

Is it okay to think of parametrized modules like functions in a programming language, or is that
not a very good analogy?



