CSE 2600
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall

This week

- Hw 4A requires an in-person demo (during office hours) for full credit
- All remaining Hw are likely to require in-person demos

. Office hours update:

- Monday 5-7pm room changed to Jubel 121

- Hw 4B will be posted today / drop boxes by Thursday

i

R, ,
SEs
=t

Review: HDLs Describe Hardware

- Uses

- “Synthesis” ;. Transformation to real hardware
- Like compilers used for programming languages

- Simulation: Confirm modules work together

- Use modules for hierarchical design — important part of managing complexity

- Description Styles

- Structure (connect 2 input AND to ...)

- Behavior (if x then y)

(System) Verilog Module: Review

SystemVerilog

Module

module example (1nput logic a, b, c, Input & Output
Output logic y) : are like the Pins

On chips or In
// module body goes here
endmodule

(System) Verilo

[s =
- Conditionals via Ternary operator (? :) 0 =

ad ke lannl bt ool c.. Lol ale
input 1logic Sl
output logic [3:0] v);
= T B N ¥ AT = ISP IR O AV & 1 B .

Behavioral

endmodule

3-bit mux2: Hierarchical

mux2

S

dO[3:0] Y[3:0] et \[7:0]
d1[3:0]

Isbmux

mux2

S
dO[3:0] y[3:0] etk

ARTRY® § B I (N5 DG AR o 3 G 5 0 011 N DR oo ju N o S B - 01 (S [0 8 e 41300
TiaebheT T heree Sy msbmux
othcpuc Ltogate [T vis

ez Lglomse (ellg e
M2 melonmabe (el e
endmodule

e

Erdyo
o3

s
i

always: Based on Events

- Concept of "event” is related to simulation and “event driven programming”

- JLS uses events: An OR gate “reacts” to events and schedules an update
See

https://github.com/bsiever/JLS/blob/e4d40cc7b5e2f8c32f6e038b8067a0a8aa5d347b/src/jls/elem/OrGate.java#L166

Discrete Time Event Simulator

- Computes all activities / updates for "now"

- They cause new activities that need to be handled in the future
(at: now + prop delay). Those are put in a queue at for that time.
Ex: Update an or-gate’'s output at now+4

- Move on to "now +17, repeat

Time Is simulated In
discrete units

Now Queue of updates

Discrete Time Event Simulator

. Updating values in current turn: Incrementally or all at once at end of turn

» Ex: Assume xis1andyis O

. |ncremental: . All at once / end of turn
=0 % <=
Y= A y ==X

. X’s final value is O . X's final value is 0

y's final value is O too y's final value is 1

SystemVerilog Standard

- Why all the simulation detalls?
- Quick intro to SystemVerilog Standard

- Section9/9.2

always Statement

. Form:

always @(sensitivity list)
statement;

- \When event In sensitivity list occurs, statement is executed

. EX: always @(posedge clock)
statement;

- Verilog: Don't use this in here

always Statement

. Form:
| i e
UIVVU,J \‘:_'\J\.—IIJI\-IVI\-Y IIJ\-I
statement:

. \When event in sensitivity list occurs, statement is executed

- Verilog: Don't use this in here

always In 2600

- Form 1: Comb logic

always_comb Use blocking assignment (=)
statement;

. Statement(s) are (complex) combinational logic. Like if/else or case.
Updates when any (relevant/used) input changes

- Form 2: Registered (synchronous, synthesize able, sequential) logic

always ff @(sensitivity list)
statement;

- Often @(posedge clock) used Use non-blocking assignment (<=)

Assignments

- Form 1: Continuous Assignment
assign var = expression;

. Continuously assigned! Largely a wired connection
- Forms 2 & 3 in Procedures (in some form of always™) :
. Blocking (=): WIll be “instant” in terms of simulation
« always comb
. Non-Blocking (<=): Will occur at end of turn all at once

e always_ ff

Rules for Assignments

.+ Synchronous sequential logic
use always_ff @(posedge clk) and nonblocking assignments (<=)
always_ff @(posedge clk)
q <=d; // nonblocking

- Simple combinational logic
use continuous assignments (assign)
assigny=a & b;

- Complex Combinational Logic
use always_comb and blocking assignments (=)

- Assign signals in only one always or assign statement!

Verilog: D Flip-Flop

moelblie e Lo hmabhe T Jheoefte

Layethe i ele e
outpple Logae
always ff @ (posedge clk)
g <= d; AT ARRE o o 8 20 S S e =V HEROD o ABIS £ 0 s o ot o B
endmodule

Resettable D-Flip-Flop 1

M DI3:0] QY3:0]

mocinlle £llepe (Ltaptc Lloenle
Tiothe T LOeLE
Lietie ~ “Ileef e
otlicout 1LogiLe

allwerys T [(joosgeee ek
T resee)] <= Z9l%
else Clasi=iale
endmodule

Resettable D-Flip-Flop 2

mocinlle £llepe (Ltaptc Lloenle
Tiothe T LOeLE
Lietie ~ “Ileef e
otlicout 1LogiLe

always £ E(posccge gk, poscale reset)
T resee)] <= Z9l%
else Clasi=iale
endmodule

Resettable D-Flip-Flop 3

3:0 - : :
o D[3:0] Q[3:0] 2o GOl

peetllle™ Ellejehe (haljothe Tlleleple
Liebhe T holerie
lopue Llogic
lTapelie Leee
othcptlic LToenie

allwelys 15 Eijguseclee Sk, PusedgEe reset)
1f (reset) g <= 4'b0;
culisicwlafmalicoRn it =uicl
endmodule

always and Combinational Logic

Block of
assignments

always comb

begin Could_haye _bgen
- done with individual
—— & O assigns

Notice = ("blocking assignment”),
not <= ("non-blocking assignment”)

always comb has nice features

 case : Selection between several options
Great for state machines!

- Must describe all possible combinations to be comb logic. Use default

case (state)
soap: hot =
highPressureWarm: hot =

default: hot = 0;
endcase

Verilog FSMs

Moore FSM
- Three parts

. Next state logic S

(arrows / next state table)

. State register (active bubble)

state

state

| state
. Output logic (output equations)

outputs

next Yk e i

Divide by 3 Counter

S2,

O

Verilog

module divideby3FSM(input logic clk,
input logic reset,
output logic q);

typedef enum logic [1:0] {SO, S1, S2} statetype;
statetype state, nextstate;

// state register

always ff @(posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

// next state logic
always comb
case (state)
SO: nextstate = S1;
S5S1: nhextstate = 52
S2: nextstate = SO;
default: nextstate = SO;
endcase

outputs

// output logic
assign g = (state == S0);
endmodule

Parameterized Modules: Declaration

- Way to specify additional details for an instance of a generic part

- Commonly the “width” of the part

module mux2
#(parameter width = 8) // name and default value
(input logic [width-1:0] dO, d1,
input logic S,
output logic [width-1:0] y);
assigny=s?dl:dO;
endmodule

Parameterized Modules: Use

- Default or specify parameter for instance.:

mux.Z myMuxi(dl, dl, 7

mux2Z (12) lowmusx(cdll, @i, & (lie] :

Ports: Positional vs. Named

. Default or specify parameter for instance:
module mux2

(parameter width = 8)

(input logic [width-1:0] dO, d1,
input logic S,

output logic [width-1:0] y);
Iilx - myMux(.dO(a), ol (b), assigny=s?d1:d0;

.s(sel), @O0k i} | endmodule

logic a, b, Sce
mux”? myMux(a, £, =1
Ve .

Test Bench: Overview & Concept
(Simple w/ Asserts)

:) B 3 . eTIh
A D . e : |
ROELE WS B :
WYY ; ' |
) 4‘.«W:(m,,AvA. Vet A Uy i ,
_

S
3 \Y-A.».
2 wu\;ﬁaﬂ...

1
i

iy

m‘..m.n ;Mnm S Fh Y,

https://en.wikipedia.org/wiki/Field-programmable_gate_array

g3 et

.
Hist

, (Dual a

RAMs

Inputs

4

Flops

19

Look Up Tables (LUTs)

D Fl

. 9,009

Lots

https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus

Playground: Combinational logic,
hardware, synthesis, and parameters

dule

InNNer mo

.Sp

/)
e
O
S —

ing parame

{

jus

Ad

le spinners

P

Mult

. Hw4B po

ing

- Br

10

Stud

Questions

How advanced can you design hardware in Verilog? Is there a point where it will break?

How does the nonblocking assignments work? (I know they are done concurrently, but it is not
obvious to me how this translates into sequential logic)

I'm still unclear how SystemVerilog “runs” compared to normal software—since hardware
updates concurrently, but code is written line-by-line, how should | think about blocking = vs

non-blocking <= in practice?
The difference between wire, logic, and net is confusing, not sure what is meant by driver.

Is it okay to think of parametrized modules like functions in a programming language, or is that
not a very good analogy?

	Slide 1: CSE 2600 Intro. To Digital Logic & Computer Design
	Slide 2: This week
	Slide 3: Chapter 4
	Slide 4: Review: HDLs Describe Hardware
	Slide 5: (System) Verilog Module: Review
	Slide 6: (System) Verilog
	Slide 7: 8-bit mux2: Hierarchical
	Slide 8: Sequential Logic
	Slide 9: always: Based on Events
	Slide 10: Discrete Time Event Simulator
	Slide 11: Discrete Time Event Simulator
	Slide 12: SystemVerilog Standard
	Slide 13: always Statement
	Slide 14: always Statement
	Slide 15: always in 2600
	Slide 16: Assignments
	Slide 17: Rules for Assignments
	Slide 18: Verilog: D Flip-Flop
	Slide 19: Resettable D-Flip-Flop 1
	Slide 20: Resettable D-Flip-Flop 2
	Slide 21: Resettable D-Flip-Flop 3
	Slide 22: always and Combinational Logic
	Slide 23: always_comb has nice features
	Slide 24: Verilog FSMs
	Slide 25: Divide by 3 Counter
	Slide 26: Verilog
	Slide 27: Parameterized Modules: Declaration
	Slide 28: Parameterized Modules: Use
	Slide 29: Ports: Positional vs. Named
	Slide 30: Test Bench: Overview & Concept (Simple w/ Asserts)
	Slide 31: Hw4A: simple_comb_tb
	Slide 32: FPGA: Field Programmable Gate Array
	Slide 33: FPGA
	Slide 34: Playground: Combinational logic, hardware, synthesis, and parameters
	Slide 36: Examples
	Slide 37: Studio / Hw
	Slide 38: Questions

