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This week

- Hw 4A requires an in-person demo (during office hours) for full credit
- All remaining Hw are likely to require in-person demos

. Office hours update:

- Monday 5-7pm room changed to Jubel 121

- Hw 4B will be posted today / drop boxes by Thursday
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Review: HDLs Describe Hardware

- Uses

- “Synthesis” ;. Transformation to real hardware
- Like compilers used for programming languages

- Simulation: Confirm modules work together

- Use modules for hierarchical design — important part of managing complexity

- Description Styles

- Structure (connect 2 input AND to ...)

- Behavior (if x then y)



(System) Verilog Module: Review

SystemVerilog

Module

module example (1nput logic a, b, c, Input & Output
Output logic y) : are like the Pins

On chips or In
// module body goes here
endmodule
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3-bit mux2: Hierarchical
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always: Based on Events

- Concept of "event” is related to simulation and “event driven programming”

- JLS uses events: An OR gate “reacts” to events and schedules an update
See


https://github.com/bsiever/JLS/blob/e4d40cc7b5e2f8c32f6e038b8067a0a8aa5d347b/src/jls/elem/OrGate.java#L166

Discrete Time Event Simulator

- Computes all activities / updates for "now"

- They cause new activities that need to be handled in the future
(at: now + prop delay). Those are put in a queue at for that time.
Ex: Update an or-gate’'s output at now+4

- Move on to "now +17, repeat

Time Is simulated In
discrete units

Now Queue of updates




Discrete Time Event Simulator

. Updating values in current turn: Incrementally or all at once at end of turn

» Ex: Assume xis1andyis O

. |ncremental: . All at once / end of turn
=0 % <=
Y= A y ==X

. X’s final value is O . X's final value is 0

y's final value is O too y's final value is 1



SystemVerilog Standard

- Why all the simulation detalls?
- Quick intro to SystemVerilog Standard

- Section9/9.2



always Statement

. Form:

always @(sensitivity list)
statement;

- \When event In sensitivity list occurs, statement is executed

. EX: always @(posedge clock)
statement;

- Verilog: Don't use this in here



always Statement

. Form:
| i e
UIVVU,J \‘:_'\J\.—IIJI\-IVI\-Y IIJ\-I
statement:

. \When event in sensitivity list occurs, statement is executed

- Verilog: Don't use this in here



always In 2600

- Form 1: Comb logic

always_comb Use blocking assignment (=)
statement;

. Statement(s) are (complex) combinational logic. Like if/else or case.
Updates when any (relevant/used) input changes

- Form 2: Registered (synchronous, synthesize able, sequential) logic

always ff @(sensitivity list)
statement;

- Often @(posedge clock) used Use non-blocking assignment (<=)



Assignments

- Form 1: Continuous Assignment
assign var = expression;

. Continuously assigned! Largely a wired connection
- Forms 2 & 3 in Procedures (in some form of always™) :
. Blocking (=): WIll be “instant” in terms of simulation
« always comb
. Non-Blocking (<=): Will occur at end of turn all at once

e always_ ff



Rules for Assignments

.+ Synchronous sequential logic
use always_ff @(posedge clk) and nonblocking assignments (<=)
always_ff @(posedge clk)
q <=d; // nonblocking

- Simple combinational logic
use continuous assignments (assign)
assigny=a & b;

- Complex Combinational Logic
use always_comb and blocking assignments (=)

- Assign signals in only one always or assign statement!



Verilog: D Flip-Flop

moelblie e Lo hmabhe T Jheoefte

Layethe i ele e
outpple Logae
always ff @ (posedge clk)
g <= d; AT ARRE o o 8 20 S S e =V HEROD o ABIS £ 0 s o ot o B
endmodule




Resettable D-Flip-Flop 1
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Resettable D-Flip-Flop 2
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Resettable D-Flip-Flop 3
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always and Combinational Logic

Block of
assignments

always comb

begin Could_haye _bgen
- done with individual
—— & O assigns

Notice = ("blocking assignment”),
not <= ("non-blocking assignment”)



always comb has nice features

 case : Selection between several options
Great for state machines!

- Must describe all possible combinations to be comb logic. Use default

case (state)
soap: hot =
highPressureWarm: hot =

default: hot = 0;
endcase




Verilog FSMs

Moore FSM
- Three parts

. Next state logic S

(arrows / next state table)

. State register (active bubble)

state

state

| state
. Output logic (output equations)

outputs

next Yk e i




Divide by 3 Counter

S2,

O



Verilog

module divideby3FSM(input logic clk,
input logic reset,
output logic q);

typedef enum logic [1:0] {SO, S1, S2} statetype;
statetype state, nextstate;

// state register

always ff @(posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

// next state logic
always comb
case (state)
SO: nextstate = S1;
S5S1: nhextstate = 52
S2: nextstate = SO;
default: nextstate = SO;
endcase

outputs

// output logic
assign g = (state == S0);
endmodule



Parameterized Modules: Declaration

- Way to specify additional details for an instance of a generic part

- Commonly the “width” of the part

module mux2
#(parameter width = 8) // name and default value
(input logic [width-1:0] dO, d1,
input logic S,
output logic [width-1:0] y);
assigny=s?dl:dO;
endmodule



Parameterized Modules: Use

- Default or specify parameter for instance.:

mux.Z myMuxi(dl, dl, 7

mux2Z (12) lowmusx(cdll, @i, & (lie] :




Ports: Positional vs. Named

. Default or specify parameter for instance:
module mux2

(parameter width = 8)

(input logic [width-1:0] dO, d1,
input logic S,

output logic [width-1:0] y);
Iilx - myMux(.dO(a), ol (b), assigny=s?d1:d0;

.s(sel), @O0k i} | endmodule

logic a, b, Sce
mux”? myMux(a, £, =1
Ve .



Test Bench: Overview & Concept
(Simple w/ Asserts)
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https://en.wikipedia.org/wiki/Field-programmable_gate_array
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https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus

Playground: Combinational logic,
hardware, synthesis, and parameters
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Questions

How advanced can you design hardware in Verilog? Is there a point where it will break?

How does the nonblocking assignments work? (I know they are done concurrently, but it is not
obvious to me how this translates into sequential logic)

I'm still unclear how SystemVerilog “runs” compared to normal software—since hardware
updates concurrently, but code is written line-by-line, how should | think about blocking = vs

non-blocking <= in practice?
The difference between wire, logic, and net is confusing, not sure what is meant by driver.

Is it okay to think of parametrized modules like functions in a programming language, or is that
not a very good analogy?
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