
CSE 2600

Intro. To Digital Logic & Computer Design

Bill Siever

&

Michael Hall

This week

• Hw 4A requires an in-person demo (during office hours) for full credit

• All remaining Hw are likely to require in-person demos

• Office hours update:

• Monday 5-7pm room changed to Jubel 121

• Hw 4B will be posted today / drop boxes by Thursday

Chapter 4

Review: HDLs Describe Hardware

• Uses

• “Synthesis” : Transformation to real hardware

• Like compilers used for programming languages

• Simulation: Confirm modules work together

• Use modules for hierarchical design — important part of managing complexity

• Description Styles

• Structure (connect 2 input AND to …)

• Behavior (if x then y)

(System) Verilog Module: Review

module example(input logic a, b, c,

 output logic y);

 // module body goes here

endmodule

Input & Output

are like the Pins

On chips or in

JLS

(System) Verilog

• Conditionals via Ternary operator (? :)

module mux2(input logic [3:0] d0, d1,

 input logic s,

 output logic [3:0] y);

 assign y = s ? d1 : d0;

endmodule

Behavioral

8-bit mux2: Hierarchical

module mux2_8(input logic [7:0] d0, d1,

 input logic s,

 output logic [7:0] y);

 mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);

 mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);

endmodule

Sequential Logic

always: Based on Events

• Concept of “event” is related to simulation and “event driven programming”

• JLS uses events: An OR gate “reacts” to events and schedules an update

See here

https://github.com/bsiever/JLS/blob/e4d40cc7b5e2f8c32f6e038b8067a0a8aa5d347b/src/jls/elem/OrGate.java#L166

• Computes all activities / updates for “now”

• They cause new activities that need to be handled in the future

(at: now + prop delay). Those are put in a queue at for that time.

Ex: Update an or-gate’s output at now+4

• Move on to “now +1”, repeat

Discrete Time Event Simulator

Time
Now

+1 +2 +3 +4

Queue of updates

Time is simulated in

discrete units

• Updating values in current turn: Incrementally or all at once at end of turn

• Ex: Assume x is 1 and y is 0

• Incremental:

 x = 0

 y = x

• x’s final value is 0

y’s final value is 0 too

Discrete Time Event Simulator

• All at once / end of turn

 x <= 0

 y <= x

• x’s final value is 0

y’s final value is 1

SystemVerilog Standard

• Why all the simulation details?

• Quick intro to SystemVerilog Standard

• Section 9 / 9.2

always Statement

• Form:
always @(sensitivity list)
 statement;

• When event in sensitivity list occurs, statement is executed

• Ex: always @(posedge clock)
 statement;

• Verilog: Don’t use this in here

always Statement

• Form:
always @(sensitivity list)
 statement;

• When event in sensitivity list occurs, statement is executed

• Verilog: Don’t use this in here

always in 2600

• Form 1: Comb logic
always_comb
 statement;

• Statement(s) are (complex) combinational logic. Like if/else or case.
Updates when any (relevant/used) input changes

• Form 2: Registered (synchronous, synthesize able, sequential) logic
always_ff @(sensitivity list)
 statement;

• Often @(posedge clock) used

Use blocking assignment (=)

Use non-blocking assignment (<=)

Assignments

• Form 1: Continuous Assignment
assign var = expression;

• Continuously assigned! Largely a wired connection

• Forms 2 & 3 in Procedures (in some form of always*) :

• Blocking (=): Will be “instant” in terms of simulation

• always_comb

• Non-Blocking (<=): Will occur at end of turn all at once

• always_ff

Rules for Assignments

• Synchronous sequential logic
use always_ff @(posedge clk) and nonblocking assignments (<=)

 always_ff @(posedge clk)
 q <= d; // nonblocking

• Simple combinational logic
use continuous assignments (assign)

 assign y = a & b;

• Complex Combinational Logic
use always_comb and blocking assignments (=)

• Assign signals in only one always or assign statement!

Verilog: D Flip-Flop

module flop(input logic clk,

 input logic [3:0] d,

 output logic [3:0] q);

 always_ff @(posedge clk)

 q <= d; // pronounced “q gets d”

endmodule

Resettable D-Flip-Flop 1

module flopr(input logic clk,

 input logic reset,

 input logic [3:0] d,

 output logic [3:0] q);

 always_ff @(posedge clk)

 if (reset) q <= 4'b0;

 else q <= d;

endmodule

Resettable D-Flip-Flop 2

module flopr(input logic clk,

 input logic reset,

 input logic [3:0] d,

 output logic [3:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 4'b0;

 else q <= d;

endmodule

Resettable D-Flip-Flop 3

module flopr(input logic clk,

 input logic reset,

 input logic en,

 input logic [3:0] d,

 output logic [3:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 4'b0;

 else if (en) q <= d;

endmodule

always and Combinational Logic

always_comb

 begin

 y = a & b

 …

 end

Block of

assignments

Could have been

done with individual
assigns

Notice = (“blocking assignment”),

not <= (“non-blocking assignment”)

always_comb has nice features

• case : Selection between several options

 Great for state machines!

• Must describe all possible combinations to be comb logic. Use default

case (state)

 soap: hot = 1;

 highPressureWarm: hot = 1;

 …

 default: hot = 0;

 endcase

Verilog FSMs

• Three parts

• Next state logic

(arrows / next state table)

• State register (active bubble)

• Output logic (output equations)

Divide by 3 Counter

Verilog

module divideby3FSM(input logic clk,
 input logic reset,
 output logic q);

 typedef enum logic [1:0] {S0, S1, S2} statetype;
 statetype state, nextstate;

 // state register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // next state logic
 always_comb
 case (state)

 S0: nextstate = S1;
 S1: nextstate = S2;
 S2: nextstate = S0;
 default: nextstate = S0;

 endcase

 // output logic
 assign q = (state == S0);

endmodule

Parameterized Modules: Declaration

• Way to specify additional details for an instance of a generic part

• Commonly the “width” of the part

module mux2
 #(parameter width = 8) // name and default value
 (input logic [width-1:0] d0, d1,
 input logic s,
 output logic [width-1:0] y);

 assign y = s ? d1 : d0;
endmodule

Parameterized Modules: Use

• Default or specify parameter for instance:

 mux2 myMux(d0, d1, s, out);

 mux2 #(12) lowmux(d0, d1, s, out);

Ports: Positional vs. Named

• Default or specify parameter for instance:

 logic a, b, see, y

 mux2 myMux(a, b, sel, y);

vs.

 mux2 myMux(.d0(a), .d1(b),

 .s(sel), .out(y));

module mux2
 #(parameter width = 8)
 (input logic [width-1:0] d0, d1,
 input logic s,
 output logic [width-1:0] y);

 assign y = s ? d1 : d0;
endmodule

Test Bench: Overview & Concept

(Simple w/ Asserts)

Hw4A: simple_comb_tb

FPGA: Field Programmable Gate Array

https://en.wikipedia.org/wiki/Field-programmable_gate_array

FPGA

• Field Programmable

• Gate Array

• Lattice iCE40 UP5k: Architecture Overview

• RAMs, (Dual and Single Port)

• Look Up Tables (LUTs): 4 inputs

• D Flip Flops

• Lots: ~5,000

https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus

Playground: Combinational logic,

hardware, synthesis, and parameters

Examples

• Leds assignment(s)

• Using keys and assign / logic

• Spinner module

• Adjusting parameters

• Multiple spinners

Studio / Hw

• Hw4B posted tonight

• Studio: Bring hardware kit + cable!

Questions

• How advanced can you design hardware in Verilog? Is there a point where it will break?

• How does the nonblocking assignments work? (I know they are done concurrently, but it is not
obvious to me how this translates into sequential logic)

• I’m still unclear how SystemVerilog “runs” compared to normal software—since hardware
updates concurrently, but code is written line-by-line, how should I think about blocking = vs
non-blocking <= in practice?

• The difference between wire, logic, and net is confusing, not sure what is meant by driver.

• Is it okay to think of parametrized modules like functions in a programming language, or is that
not a very good analogy?

	Slide 1: CSE 2600 Intro. To Digital Logic & Computer Design
	Slide 2: This week
	Slide 3: Chapter 4
	Slide 4: Review: HDLs Describe Hardware
	Slide 5: (System) Verilog Module: Review
	Slide 6: (System) Verilog
	Slide 7: 8-bit mux2: Hierarchical
	Slide 8: Sequential Logic
	Slide 9: always: Based on Events
	Slide 10: Discrete Time Event Simulator
	Slide 11: Discrete Time Event Simulator
	Slide 12: SystemVerilog Standard
	Slide 13: always Statement
	Slide 14: always Statement
	Slide 15: always in 2600
	Slide 16: Assignments
	Slide 17: Rules for Assignments
	Slide 18: Verilog: D Flip-Flop
	Slide 19: Resettable D-Flip-Flop 1
	Slide 20: Resettable D-Flip-Flop 2
	Slide 21: Resettable D-Flip-Flop 3
	Slide 22: always and Combinational Logic
	Slide 23: always_comb has nice features
	Slide 24: Verilog FSMs
	Slide 25: Divide by 3 Counter
	Slide 26: Verilog
	Slide 27: Parameterized Modules: Declaration
	Slide 28: Parameterized Modules: Use
	Slide 29: Ports: Positional vs. Named
	Slide 30: Test Bench: Overview & Concept (Simple w/ Asserts)
	Slide 31: Hw4A: simple_comb_tb
	Slide 32: FPGA: Field Programmable Gate Array
	Slide 33: FPGA
	Slide 34: Playground: Combinational logic, hardware, synthesis, and parameters
	Slide 36: Examples
	Slide 37: Studio / Hw
	Slide 38: Questions

