CSE 2600
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall

Announcements

Homework 1: Returned in a few days

* Can request “regrade” of problems for ~1 week on assignments
Not accepted after that.

Homework 3A Posted / Due Sunday at 11:59pm
* Dropboxes posted Thursday

Fee: $50 will be applied to student accounts in coming week(s)

Chapters 1-2: Combinational Logic

e (Purely) combines current inputs to produce output
* Doesn’t depend on past inputs
e Can be represented with a simple table

 One-way: Doesn’t have any feedback paths from output back to inputs

ONE
WAY

—

Big-Picture So Far...

* We can build reliable, complex machines that work in binary
* Yay Transistors!
* We can represent almost any information via binary encodings
* Integers: We can even easily do arithmetic operations (+, -, etc.)

» Letters/characters, “real” numbers, etc.

Big-Picture So Far...

* Gates: We can represent some primitive binary
“machines” via a symbolic notation. (b))
Structure shows the flow of information.

Big-Picture So Far...

* Almost any simple mapping (function) can be represented via a table

« Show the “output” for all possible combinations of inputs

INPUTS OUTPUTS
(IN BINARY) (IN BINARY)

Big-Picture So Far...

* Any full table can be converted to a boolean logic equation

Inputs Output
S I O
0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3

Big-Picture So Far...

« Any full table can be converted to a sum-of-products (SOP) boolean equation

Inputs Output
S i o O
0 0 0 0
0 0 1 0
0 1 0 1 S o I < Iy
0 1 1 1 S el < Il
1 0 0 0
1 0 1 0
1 1 0 1 S el < I
1 1 1 0

Big-Picture So Far...

« Any mapping/function that combines current inputs to produce the output could be
described as a table

* The table could be turned into equations
* The equations could be made into machines
* Works on small problems, but table is to large for many problems
* Ex: Add 2, 32-bit numbers:
* Table with 64 columns of input

» 18446744073709551616 rows in that table...

Studio 2B Recap

* Karnaugh Maps

e Cells represent minterms

« Combining cells is application of Theorem 10: (/27 - C) <+ ([< C)) = /&}

* Only works if rows and columns are in Gray code order

https://en.wikipedia.org/wiki/Karnaugh_map
https://en.wikipedia.org/wiki/Gray_code

Studio 2A: Example

 Small tables can be represented via K-Maps

00

01

11

10

Inputs Output
S i o O
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Studio 2A: Example

» K-Maps represent SOP equations

Studio 2B Misc.

Negation Notation

\ 1D,
o VS. Al © /o

S3

A\
A\

A\ D) A\ D
/YD) = A\ D)

Glitches: ... a single input transition can cause multiple output transitions.
« Often a result of different delays in a path

Packages & Packages

https://en.wikipedia.org/wiki/Semiconductor_package
https://washu-cse260m-sp25.github.io/studios/2b/7400.pdf

Goal: Store Data

Examples

* Bistable Example 1: Inverters
» Bistable Example 2A: Inverters & some control

» Bitable Example 2B: Inverters, control, and ...

Story Time: Latches+

Stable, Reinforcing Setup: SR Latch

e On-line Demo: https://loqic.lv/

* Bistable: Two stable configurations

 Goal: Met!

 S=Set, R=Reset

https://logic.ly/

SR Latch
=

@ 1
O >
Set

Goal: Store Data

* Set/Reset is inconvenient

 We want something like, data=X, where x is 0 or 1
(store X, not “set or reset data based on X”)

 We want to store X in data when we’re ready to!

* Clock (Clk): Indicates when we want to change the data

» Start with SR Latch %:

» Describe Desired Behavior (of output, Q)

CLOCK DATA Q
0 0 (Unchanged)
0 1 (Unchanged)
1 0 0

1 1

1

» Start with SR Latch %:

» Describe Desired Behavior (of output, Q)

CLOCK DATA
0 0
0 1

» Start with SR Latch %:

» Describe Desired Behavior (of output, Q)

CLOCK DATA Q
0 0
0 1
1 0 RESET

SET

o Start with SR Latch

=25

» Describe Desired Behavior (of output, Q)

* Just combinational logic

CLOCK DATA Q
0 0
0 1
1 0 RESET

SET

Start with SR Latch

=25

Describe Desired Behavior (of output, Q)

Just combinational logic

Reset = Clock * /Data
Set = Clock * Data

CLOCK DATA Q
0 0
0 1
1 0 RESET

SET

Updates: D-Latch

D-Latch

D-Latch

* “Latches on” to last data value when clock goes low
 Is sensitive to the level of the clock

* |Is “transparent” when the clock is high

Goal: Store Data

* D-Latch is still a bit inconvenient
 We’d like something like a (simple) camera

* The instant shutter is “pressed” we capture data
at that exact instant (no transparent phase)

Flip-Flop

https://openclipart.org/detail/288726/flip-flops-4

D Flip-Flop

 Two D-Latches with clocks in opposite states (via an inverter)
* First stage: Transparent when clock is Low
« Second stage: Transparent when clock is High
« Effect: Capture D at precise instant clock goes from low to high

* |.e. the clock EDGE

* Edge triggered. Specifically, Rising Edge Triggered

Signal Edges

High Level

/ Low Level "\

Falling Edge of Signal Rising Edge of Signal

https://www.ni.com/docs/en-US/bundle/ni-hsdio/page/hsdio/
fedage_trigaer.html

https://www.ni.com/docs/en-US/bundle/ni-hsdio/page/hsdio/fedge_trigger.html
https://www.ni.com/docs/en-US/bundle/ni-hsdio/page/hsdio/fedge_trigger.html

Updates: D-Flip-Flop

“Enable”

 We may want to have two things control timing: the clock and an enable

 Ex: X[0] =1 (in a program) . We only want to modify X when that line runs.

\ 0 b QJ»Q >
D> 1 _| |DFlipFlop
C Q
b %
EN >
R

Chapter 3: Sequential & Synchronous
Logic

* Need to know sequence of inputs
* Can’t be represented with a simple table of just inputs and outputs
(Possibly a complex table that includes some representation of history of
inputs and outputs)

e Text: “Some sequential circuits are just plain kooky”

Synchronous™ Sequential Circuits

Are synchronized by a common clock

Uses registers (D Flip Flops)

Mix of registers and combinational logic
Cycles in circuit include at least one register

Goal: Impose predictable behavior!

* eliminates the “kooky”

Finite State Machines

« State: A condition of being
* Finite: Er. Finite
 Real machine has real-world limitations: % 3¢ D-latches

« k D-Latches means < 2" states (finite)

FSM Applications

* Things with modes or sequences of steps. Examples:

« Washing Machine (fill, agitate, rinse, spin)

Stop lights & Traffic control: Green, Yellow, Red

Locks: Locked & unlocked

Computer programs: Playing game vs. on menu

Elevator controls (state = floor)

Book Example Variation: Stop Light

FSM: Moore Machine Structure

Background

Clock is 5s: minimum time in a state

Need to describe behavior over time

State diagram forms

 FSM Designer: https://wilsonem.qgithub.io/fsm/

Example: Variation on textbook;
Different output signals and “one hot” encoding (Completed)

https://en.wikipedia.org/wiki/State_diagram
https://wilsonem.github.io/fsm/
https://docs.google.com/document/d/1c0orfwsD-DRykfyRGDAeBri6X8U_Xufcu83gXg0eA8g/edit?tab=t.0
https://docs.google.com/document/d/16m6rK-pDfQVh7GDdvArF9YbO9p6aRwt95I14xey1fy0/edit

Partial JLS Implementation

FSM: Mealy Machine

FSM: Moore Machine Structure

Questions

» [State Machine Encoding Choices?]
Memory vs. Logic: They can impact complexity of combinational logic.
(Typically One-hot: more memory, but simpler logic))

 [FSMs? Mealy? Moore?]: More (Moore?) next time

* [l don’t get/understand Latches/Edges/Levels/Flip-Flops/etc.]

* [Which memory things are important]: (Rising) Edge Triggered D-latch.
(Most others were just part of the journey to it)

Questions

[What about async stuff / parallel? Does it matter? Where is it used?]

* Yes, matters. Is often critical in high performance systems (real time computations,
handling volumes of streaming data, etc.)

Will we make FSMs? Yep.

Are FSMs part of modern computers? Yes —they often handle the control of CPU
operations. We'll see this later.

Is this “clock” related to the computer clock? How does it relate to computer performance?
It’s the same basic idea. Much of a computer is controlled by a synchronous machine. The
clock speed is based on propagation delay and dictates the speed of computations.

Next Time

e Studio

