
CSE 2600
Intro. To Digital Logic & Computer Design

Bill Siever
&

Michael Hall

Announcements

• Homework 1: Returned in a few days

• Can request “regrade” of problems for ~1 week on assignments
Not accepted after that.

• Homework 3A Posted / Due Sunday at 11:59pm

• Dropboxes posted Thursday

• Fee: $50 will be applied to student accounts in coming week(s)

Chapters 1-2: Combinational Logic

• (Purely) combines current inputs to produce output

• Doesn’t depend on past inputs

• Can be represented with a simple table

• One-way: Doesn’t have any feedback paths from output back to inputs

Big-Picture So Far…

• We can build reliable, complex machines that work in binary

• Yay Transistors!

• We can represent almost any information via binary encodings

• Integers: We can even easily do arithmetic operations (+, -, etc.)

• Letters/characters, “real” numbers, etc.

Big-Picture So Far…

• Gates: We can represent some primitive binary
“machines” via a symbolic notation.
Structure shows the flow of information.

Big-Picture So Far…

• Almost any simple mapping (function) can be represented via a table

• Show the “output” for all possible combinations of inputs

INPUTS
(IN BINARY)

OUTPUTS
(IN BINARY)

… …

Big-Picture So Far…

• Any full table can be converted to a boolean logic equation
Inputs Output

S I O
0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3

Big-Picture So Far…

• Any full table can be converted to a sum-of-products (SOP) boolean equation
Inputs Output

S I1 I0 O

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

S ⋅ I1 ⋅ I0

S ⋅ I1 ⋅ I0

S ⋅ I1 ⋅ I0

Big-Picture So Far…
• Any mapping/function that combines current inputs to produce the output could be

described as a table

• The table could be turned into equations

• The equations could be made into machines

• Works on small problems, but table is to large for many problems

• Ex: Add 2, 32-bit numbers:

• Table with 64 columns of input

• 18446744073709551616 rows in that table…

Studio 2B Recap

• Karnaugh Maps

• Cells represent minterms

• Combining cells is application of Theorem 10:

• Only works if rows and columns are in Gray code order

(B ⋅ C) + (B ⋅ C) = B

https://en.wikipedia.org/wiki/Karnaugh_map
https://en.wikipedia.org/wiki/Gray_code

Studio 2A: Example

• Small tables can be represented via K-Maps
Inputs Output

S I1 I0 O

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

I

S 00 01 11 10

0

1

Studio 2A: Example

• K-Maps represent SOP equations
I

S 00 01 11 10

0 0 0 1 1

1 0 0 0 1

Studio 2B Misc.
• Negation Notation

• vs.

•

• Glitches: ... a single input transition can cause multiple output transitions.

• Often a result of different delays in a path

• Packages & Packages

AB A ⋅ B

A ⋅ B = AB

https://en.wikipedia.org/wiki/Semiconductor_package
https://washu-cse260m-sp25.github.io/studios/2b/7400.pdf

Goal: Store Data

Examples

• Bistable Example 1: Inverters

• Bistable Example 2A: Inverters & some control

• Bitable Example 2B: Inverters, control, and …

Story Time: Latches+

Stable, Reinforcing Setup: SR Latch

• On-line Demo: https://logic.ly/

• Bistable: Two stable configurations

• Goal: Met!

• S=Set, R=Reset

https://logic.ly/

SR Latch

Goal: Store Data
• Set/Reset is inconvenient

• We want something like, data=X, where x is 0 or 1
(store X, not “set or reset data based on X”)

• We want to store X in data when we’re ready to!

• Clock (Clk): Indicates when we want to change the data

D-Latch

• Start with SR Latch

• Describe Desired Behavior (of output, Q)
CLOCK DATA Q

0 0 (Unchanged)

0 1 (Unchanged)

1 0 0

1 1 1

D-Latch

• Start with SR Latch

• Describe Desired Behavior (of output, Q) . Qprev
. Qprev

CLOCK DATA Q

0 0

0 1

1 0 0

1 1 1

D-Latch

• Start with SR Latch

• Describe Desired Behavior (of output, Q) . Qprev
. Qprev

CLOCK DATA Q

0 0

0 1

1 0 RESET

1 1 SET

D-Latch

• Start with SR Latch

• Describe Desired Behavior (of output, Q)

• Just combinational logic

. Qprev

. Qprev

CLOCK DATA Q

0 0

0 1

1 0 RESET

1 1 SET

D-Latch

• Start with SR Latch

• Describe Desired Behavior (of output, Q)

• Just combinational logic

• Reset = Clock * /Data
Set = Clock * Data

. Qprev

. Qprev

CLOCK DATA Q

0 0

0 1

1 0 RESET

1 1 SET

Updates: D-Latch

D-Latch

D-Latch

• “Latches on” to last data value when clock goes low

• Is sensitive to the level of the clock

• Is “transparent” when the clock is high

Goal: Store Data

• D-Latch is still a bit inconvenient

• We’d like something like a (simple) camera

• The instant shutter is “pressed” we capture data
at that exact instant (no transparent phase)

Flip-Flop

https://openclipart.org/detail/288726/flip-flops-4

D Flip-Flop
• Two D-Latches with clocks in opposite states (via an inverter)

• First stage: Transparent when clock is Low

• Second stage: Transparent when clock is High

• Effect: Capture D at precise instant clock goes from low to high

• I.e. the clock EDGE

• Edge triggered. Specifically, Rising Edge Triggered

Signal Edges

https://www.ni.com/docs/en-US/bundle/ni-hsdio/page/hsdio/
fedge_trigger.html

https://www.ni.com/docs/en-US/bundle/ni-hsdio/page/hsdio/fedge_trigger.html
https://www.ni.com/docs/en-US/bundle/ni-hsdio/page/hsdio/fedge_trigger.html

Updates: D-Flip-Flop

“Enable”

• We may want to have two things control timing: the clock and an enable

• Ex: X[0] = 1 (in a program) . We only want to modify X when that line runs.

Chapter 3: Sequential & Synchronous
Logic

• Need to know sequence of inputs

• Can’t be represented with a simple table of just inputs and outputs
(Possibly a complex table that includes some representation of history of
inputs and outputs)

• Text: “Some sequential circuits are just plain kooky”

Synchronous* Sequential Circuits

• Are synchronized by a common clock

• Uses registers (D Flip Flops)

• Mix of registers and combinational logic

• Cycles in circuit include at least one register

• Goal: Impose predictable behavior!

* eliminates the “kooky”

Finite State Machines

• State: A condition of being

• Finite: Er. Finite

• Real machine has real-world limitations: D-latches

• D-Latches means states (finite)

k ×

k ≤ 2k

FSM Applications
• Things with modes or sequences of steps. Examples:

• Washing Machine (fill, agitate, rinse, spin)

• Stop lights & Traffic control: Green, Yellow, Red

• Locks: Locked & unlocked

• Computer programs: Playing game vs. on menu

• Elevator controls (state = floor)

• …

Book Example Variation: Stop Light

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.
Bravado

Blvd.
Dorms

Fields

Dining
Hall

Labs

FSM: Moore Machine Structure

CLK
M Nk knext

state
logic

output
logic

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Background

• Clock is 5s: minimum time in a state

• Need to describe behavior over time

• State diagram forms

• FSM Designer: https://wilsonem.github.io/fsm/

• Example: Variation on textbook;
 Different output signals and “one hot” encoding (Completed)

https://en.wikipedia.org/wiki/State_diagram
https://wilsonem.github.io/fsm/
https://docs.google.com/document/d/1c0orfwsD-DRykfyRGDAeBri6X8U_Xufcu83gXg0eA8g/edit?tab=t.0
https://docs.google.com/document/d/16m6rK-pDfQVh7GDdvArF9YbO9p6aRwt95I14xey1fy0/edit

Partial JLS Implementation

FSM: Mealy Machine

CLK
M Nk knext

state
logic

output
logic

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

FSM: Moore Machine Structure

CLK
M Nk knext

state
logic

output
logic

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Questions

• [State Machine Encoding Choices?]
 Memory vs. Logic: They can impact complexity of combinational logic.
 (Typically One-hot: more memory, but simpler logic))

• [FSMs? Mealy? Moore?]: More (Moore?) next time

• [I don’t get/understand Latches/Edges/Levels/Flip-Flops/etc.]

• [Which memory things are important]: (Rising) Edge Triggered D-latch.
(Most others were just part of the journey to it)

Questions
• [What about async stuff / parallel? Does it matter? Where is it used?]

• Yes, matters. Is often critical in high performance systems (real time computations,
handling volumes of streaming data, etc.)

• Will we make FSMs? Yep.

• Are FSMs part of modern computers? Yes —they often handle the control of CPU
operations. We’ll see this later.

• Is this “clock” related to the computer clock? How does it relate to computer performance?
It’s the same basic idea. Much of a computer is controlled by a synchronous machine. The
clock speed is based on propagation delay and dictates the speed of computations.

Next Time

• Studio

