CSE 2600
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall

Announcements

- Office hours: Posted but there may be updates. See “help” page in Canvas or
course site

- Homework 2B should be posted today / Due Sunday at 11:59pm
- Dropboxes posted around Thursday

- Working on scheduling “Studio Lead” sessions. Be sure to complete the survey
posted in Canvas (Piazza post @24)

Studio 2A Highlights

- Unsigned number line

- Two’s complement

Last Time

- Studio: Binary Number Lines Extended

N S S S S . —

Decimal: @ 1 2 3 4 5 6 7
Binary: 000 001 010 011 100 101 110 111

Last Time

- Studio: Binary Number Lines Extended

1 |] |

Decimal:
ec a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Blnal’y: 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111

Last Time

- Studio: Binary Number Lines Extended

1 |] |

Decimal:
ec a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Blnary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Last Time

- Studio: Binary Number Lines Extended

1 |] |

Decimal:
ec a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Blnal’y 0ooo0 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Last Time

- Studio: Two’s Complement

1 |] |

Decimal:
ec a 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1
Blnary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Last Time

- Studio: Two’s Complement

1 |] |

Decimal:
ec a 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1
Blnary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Last Time

- Studio: Two’s Complement - Above/Below

N T N LS S S

Decimal:
1 2 3 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111

LLLL o 0L LOLL 00LL LLOL 0LOL LOOL 000}
T e v & 9 L8

1 1 1 1 T 11

Last Time

- Studio: Two’s Complement - Above/Below & Bitwise Inversion

| 1 |

Decimal:

ecima . 1 , j))) !

B|nary: 0000 0001 0010 0011 0100 0101 0110 0111

Blnary: 1111 1110 1101 1100 1011 1010 1001 1000
i - -1 2 -3 4 5 -6 -7 -8

Decimal:

1 1 1 1 1 11

Last Time

. Studio: Two’'s Complement - Mathematical Negation (—1 X)

| 1 |

Decimal:

ecima . 1 , j))) !

B|nary: 0000 0001 0010 0011 0100 0101 0110 0111

Blnary: 1111 1110 1101 1100 1011 1010 1001 1000
i - -1 2 -3 4 5 -6 -7 -8

Decimal:

1 1 1 1 1 11

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X6)

Decimal: 1 | @

0 1 2 3 4 5 6 7

B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Bmary: 1111 1110 1101 1100 1011 1010 1001 1000

i . -1 -2 -3 -4 -5 -6 -7 -8
Decimal:

1 1 1 1 1 11

- Studio

Decimal:
Binary:

Binary:
Decimal:

Last Time

: Two’s Complement - Mathematical Negation (—1 X6)

| 1 |

0 1 2 3 4 5 6 7
0000 0001 0010 0011 0100 0101 0110 0111

1111 1110 1101 1100 1011 1010 1001 1000
-1 2 3 4 5 6 -7 -8

T

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X6)

| 1 |

Decimal:

ecima . 1 , j))) !

B|nary: 0000 0001 0010 0011 0100 0101 0110 0111

Blnary: 1111 1110 1101 1100 1011 1010 1001 1000
i - -1 2 -3 4 5 -6 -7 -8

Decimal:

&

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X-6)

| 1 |

Decimal:

ecima . 1 , j))) !

B|nary: 0000 0001 0010 0011 0100 0101 0110 0111

Blnary: 1111 1110 1101 1100 1011 1010 1001 1000
i - -1 2 -3 4 5 -6 -7 -8

Decimal:

&

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X-6)

Decimal ! @ 1 |

0 1 2 3 4 5 6 7

B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Bmary: 1111 1110 1101 1100 1011 1010 1001 1000

i . -1 -2 -3 -4 -5 -6 -7 -8
Decimal:

1 1 1 1 1 11

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X-6)

Decimal I -

0 1 2 3 4 5 6 7

B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Bmary: 1111 1110 1101 1100 1011 1010 1001 1000

i . -1 -2 -3 -4 -5 -6 -7 -8
Decimal:

1 1 1 1 1 11

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 XA)
- Logic: A+1
- We are assumed to have “machines” for both;

- Bitwise inversion (n invertors) and n-bit addition
(more to come on n-bit addition)

Last Time

- Assume an n bit adder, like:

e N bit subtractor can be built:

Last Time: Tee

-ty + 1ty

. Theorem /Dual T5: B+ B =1
- Therefore “1”

. Eventually... JLS THAT IS THE QUESTION

Last Time

- JLS Logic Types: Unsigned & Assumes values are 0 att = 0

Chapter 2

- Tables & Sum-of-products
- A “can’t go wrong” way to build logic that behaves a specified way
- Karnaugh Maps: A form of optimization

- Timing: Delay of circuits

Background: Minterms

- Minterms: Given n variables, a product (AND) containing all n exactly once, in
either their original or negated form

. Consider: A-B-C-D
|dentify all possible combinations of inputs which make it true:

Chapter 2: Minterms

. Considern = 3 and 4, B, C; Which are Minterms? Which are not and why?

. ABC

. ABA

Minterms & Truth Tables

Carry Out Sum

0 0

[E R

o | O

—_—

Minterms & Truth Tables

>
w

II

-_—

1+ 1 = 0

II

o

—_—

Minterms & Truth Tables

- Minterms are true for a single combination of inputs

- This is essentially selecting a row of a truth table

Minterms & Truth Tables

)
>
@
%)
3

u

en=3: ClL,AB

(@)

- Where/when is Sum true (any
place)?

—_—

o

o

0

—_—

Minterms & Truth Tables

e.n=3: Cl,AB

- Where/when is any of these
true?

Sum=Cl-A-B+
Cl-A-B+
Cl-A-B+
Cl-A-B

Truth Table -> Sum of Minterms

Canonical Form

Important!

- Any simple function (mapping) can be represented as a truth table
« N-bit binary numbers can be used to represent all the inputs
. The table will need 2™ rows to represent all the possible combinations of inputs
« m-bit binary numbers can represent the output(s)
- Each of the m bits of output can be represent by a sum-of-products (sum of minterms) equation.

- There’s a minterm for each place the bit of mis a 1 (true)

. Canonical form = The “sum” of these Minterms

Sum-of-Products

- All our combinational logic could be represented in a table
- All the outputs can be represented as equations
- Those equations can be realized with just the concept of AND, OR, & NOT

- l.e., we can build computing machines for anything we can represent in a table
if we have AND, OR, or NOT.

- The idea of Tables and “Look Up Tables” (LUTSs) is really useful!

Product-Of-Sums

- Alternative to SOP: Uses maxterms (SUM of all input variables) in large product

. Form: Y=(A4+B+C)-(A+B+C) -

- Can be constructed from table by focusing on:
1) rows with zeros => each a “sum” for a zero in only that row
and

2) products that will combine them

- Sum-of-Prod: Smaller when more 1s than Os in table;
Otherwise Prod-of-Sums is smaller

- This class: slightly focused on Look-up Table (LUT) concept / usually favor SOP

Real Circuits: Xs and Zs

- Os and 1s represent real-world, continuous values, like voltages

- Ex:0=0v (gnd); 1=5v

- What's 2.3v?

(“Contention”)

- X: That's illegal / don’t know

0

- What happens if a Ov wire is connected to 5v wire? B'E
1
1

Ry

Simulator / Language Types

- Bits & Types: 10101100 can have different interpretations
- Programming languages use data types

- Verilog (Chapter 4)’s logic type:

« 0, 1, X (unknown), Z (high-impedance)

- Other simulators often use X for initial value

(Helps catch errors and misunderstandings earlier vs. building on a bad
assumption!)

Real Circuits: Xs and Zs

- Os and 1s represent real-world, continuous values, like voltages
- Ex: 0 =0v (gnd); 1 = 5v (relative to that ground)

- Voltage is a relative measure
(like water pressure: it's the difference between two points)

- Z: “Floating” value / disconnected

- Sometimes useful to “disconnect” something to prevent contention
(to share wires with different things in control at different times)

- Sometimes an error when nothing is connected
(Behavior depends on technology and conditions; Can be random or influenced by external things — like
moving a hand near a circuit!)

Circuit “Optimization”

- Time or performance?

- Number of parts?

- Total cost?

- Combination: E.g., Cheapest way to achieve a specific level of performance

Circuit “Optimization”

- Logic Minimization

- Canonical Form is seldom the minimum number of parts

- Can “combine” overlapping terms (implicants / product)

- Prime Implicant: Can’t be further reduced

- ExA-B-C+A-B-C

. Truewhen A4 - C. The B and B cancel

Karnaugh (K) Maps

- A visual way to do term optimization
- Rely on tables that allow easy identification of ways to combine implicants

- Uses Gray code ordering, not counting order!!!

- Only useful for up to 4 variables. l.e., small problems

Karnaugh (K) Maps

- Goal: Cover all 1s with circles

- As few circles as possible & as large as possible
- Span rectangles with sides of 1, 2, 4, or 8

- Top/bottom and left/right wrap!

Give an opt. equation for...

Output
D1/D0O

0
S
1

o olo|lo w
© = = o o|Y
O

© s

@)

-
- O

0]

1 1

0] 0

1 1

1 1 0
0] 1

1 1

—
—

Give an opt. equation for...

Output
D1/D0O

00 01 11 10
0
S
1

o olo|lo w

© = = o o|Y
O

© s

@)

-
- O

0]

1 1

0] 0

1 1

1 1 0
0] 1

1 1

—
—

Give an opt. equation for...

Output
D1 DO

00 01
D1 changes

o olo|lo w
o~ =~ o o Y
O

© s

@)

-
- O

0]

1 1

0] 0

1 1

1 1 0
0] 1

1 1

—
—

Give an opt. equation for...

Output
D1 DO

o olo|lo w
o~ =~ o o Y
O

© s

@)

-
- O

0]

1 1

0] 0

1 1

1 1 0
0] 1

1 1

—
—

t. equation for...

ive an op

G

E2

Inputs

@)

B

A

ive an equation for...

G

E3

——
-]
Q.

)
=)

o

O

- Sometimes there

are input
combinations that
can never occur

- Rather than specify
a default value, we
can use “X” for
Don’t Care

- This often results in

simpler Boolean
equations

Don’t cares in K-maps

PP RPRRPPRPRPERPPRPOOCOO0OOOOOD

RPrRPrRrRRPRPROCOOCORRLRRLRRPRLROoOOoOOOD

d
C
0
0
il
1
0
0
1
il
0
0
1
1
0
0
1
1

RPRoORrRrORrROROROR ORFR O OO

KA EPEPRPRPRPREXORPREORK

Y
AB
CD 00 01 11 10
4)
00| 1 0 X 1
01| 0O X X 1
11 (1 1 X X\
10/ 1 1 X X
N N J

- Determines how fast we can build circuits

Timing

- Delay: time between input change and

output changing —»| delay

- Caused by

- Capacitance and resistance in a circuit

- Speed of light limitation

Time

Propagation & Contamination Delay

- Propagation delay: t,4 = max delay from A 4% Y

input to output

- Contamination delay: t.,4 = min delay from — tpd —
input to output i :
A)
- Reasons why t,; and t 4, may be different: '\ |

- Different rising and falling delays (e.g., n- Y i W
vs p-type transistors) i | :

- Multiple inputs and outputs, some of which

are faster than others .
Time -

- Temperature of the circuit: Circuits slow
down when hot and speed up when cold

Delay Calculation

Critical Path
A = n1i
B - n2
Critical (Long) Path: t,; = 2t ,; anp t £oa OR C
(max delay)
D P
Short Path: ., =, anp Short Path

(min delay)

2.8: More Parts

- Q: We want a 4-to-1 multiplexor. How big is the full truth table?
+ Q: Our CPU may need a 32-to-1 multiplexor. How big is the truth table?
- We need a new approach

. Hierarchical construction

Hierarchical Approach

- We've created a 2-to-1 MUX

. Construct a 4-to-1 MUX using 2-to-1 MUXes

- Focus on desired behavior using existing parts

- Behavioral Description as a Table

4-to-1 MUX Behavior

Output (In terms
of Inputs)

Inputs of Interest

Hierarchical Construction of 4-input
Mix

Questions

- There are a lot of different logic gates, do we have to memorize them all?

- NOT, AND, OR are the basic gates; others are related to them: XOR, XNOR, NAND, NOR

- The two’s complement system is a little new and confusing to me.

- How do engineers design and manage systems built around hundreds or even thousands of logic gates?

- Modern designs use an HDL language such as SystemVerilog or VHDL to express the logic or behavior of the circuit.
Tools called logic synthesizers will optimize these logic circuits.

- Hard time understanding hexadecimal. Specifically, confused about converting between hexadecimal to binary/decimal
and vice versa.

- Hex is a convenient way to express binary that is more human read/writable, particularly when there is a large
number of binary digits. There is a one-to-one correspondence between hex and binary (can write a table for this).
For conversion to/from decimal, then a place value method can be used to convert decimal to hex, or express the hex
digits in a formula to convert back to decimal in terms of base 16 for each digit.

Review / Catchup

- SOP equations
- Table to describe behavior
- Product equation for “matching” exact pattern
- Sum of Products for full, single-bit behavior
- Overall circuit structure
- Pros: Can’t go wrong! Can build any machine....Can be messy though.

-« Product of sums: Apply DeMorgan’s law or focus on Os and construct

