CSE 2600
Intro. To Digital Logic & Computer Design

Bill Siever
&
Michael Hall

Announcements

. Office hours: Posted but there may be updates. See “help” page in Canvas or

- Homework 2B should be posted today / Due Sunday at 11:59pm
- Dropboxes posted around Thursday

- Working on scheduling "Studio Lead” sessions. Be sure to complete the survey
posted in Canvas (Piazza post)

https://washu-cse260m-sp25.github.io/
https://piazza.com/class/med947uhz934lp/post/24

Studio 2A Highlights

- Unsigned number line

- Two's complement

Last Time

- Studio: Binary Number Lines Extended

Decimal: ¢ 1 2 3 4 5 6 7
Binary: 000 001 WUIURSGHEEEGY (01T 110 111

Last Time

- Studio: Binary Number Lines Extended

e | ||

Decimal:
1 2 3 4 5 6 V4 3 9 10 11 12 13 14 15
Blnary: 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111

Last Time

- Studio: Binary Number Lines Extended

e | ||

Decimal:
1 2 3 4 5 6 V4 3 9 10 11 12 13 14 15
B|nary: 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111

Last Time

- Studio: Binary Number Lines Extended

e | ||

Decimal:
1 2 3 4 5 6 V4 3 9 10 11 12 13 14 15
Binary- 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 10K = e

Last Time

. Studio: Two’'s Complement

e | ||

Decimal:
1 2 3 4 5 6 V4
Binary- 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Last Time

. Studio: Two’'s Complement

e | ||

Decimal:
1 2 3 4 5 6 V4 -8 -/ -6 -5 il -3 -2 -1
Binary- 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Last Time

- Studio: Two’'s Complement - Above/Below

M

Decimal:
1 2 3 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111

LLLL OLbLL LOLL 00LL L1LIOL 0L0L 1LOOL 000l
L - C Es V- Gr or le 8-

T 1 °F e

Last Time

. Studio: Two's Complement - Above/Below & Bitwise Inversion

|

Decimal:
0 1 2 5 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Blnary: Ta1e e e 1100 1011 1010 1001 1000
| : -1 2 3 4 5 6 -7 -8
Decimal:

T

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X)

|

Decimal:
0 1 2 5 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Blnary: Ta1e e e 1100 1011 1010 1001 1000
| : -1 2 3 4 5 6 -7 -8
Decimal:

T

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X)

Decimal:
0 1 2 5 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Blnary: Ta1e e e 1100 1011 1010 1001 1000
| : -1 2 3 4 5 6 -7 -8
Decimal:

T

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X)

|

Decimal:
0 1 2 5 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Blnary: Ta1e e e 1100 1011 1010 1001 1000
| : -1 2 3 4 5 6 -7 -8
Decimal:

T

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X)

|

Decimal:
0 1 2 5 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Blnary: Ta1e e e 1100 1011 1010 1001 1000
| : -1 2 3 4 5 6 -7 -8
Decimal:

T N

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X-)

|

Decimal:
0 1 2 5 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Blnary: Ta1e e e 1100 1011 1010 1001 1000
| : -1 2 3 4 5 6 -7 -8
Decimal:

T N

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X-)

|

Decimal:
0 1 2 5 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Blnary: Ta1e e e 1100 1011 1010 1001 1000
| : -1 2 3 4 5 6 -7 -8
Decimal:

T

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 X-)

Decimal:
0 1 2 5 4 5 6 7
B|nary: 0000 0001 0010 0011 0100 0101 0110 0111
Blnary: Ta1e e e 1100 1011 1010 1001 1000
| : -1 2 3 4 5 6 -7 -8
Decimal:

T

Last Time

. Studio: Two’s Complement - Mathematical Negation (—1 XA)
. Logic: i
- We are assumed to have "machines” for both;

- Bitwise inversion (n invertors) and n-bit addition
(more to come on n-bit addition)

e

=)

7
(==
LS

o,

o
N

i

’

O
- @®
o
e
)
P ED)
(7))
e

e ND

THAT IS THE QUESTION

. Eventually... JLS

e

=)

o
N

i

’

Chapter 2

- Tables & Sum-of-products
- A "can’t go wrong” way to build logic that behaves a specified way
. Karnaugh Maps: A form of optimization

- Timing: Delay of circuits

Background: Minterms

- Minterms: Given n variables, a product (AND) containing all n exactly once, in
either their original or negated form

. Consider: A-B-C-D
ldentify all possible combinations of inputs which make it true:

Chapter 2: Minterms

. Considern = 3 and 4, B, C; Which are Minterms? \Which are not and why?

. ABC

. ABA

Minterms & Truth Tables

cil A B Carry Out Sum
0+ 0O @ = 0 0
0+ 0O+ | = 0 1
0+ 18 @ = 0 1
0+ [+ = 1 0
1+ 0 @G = 0 1
1+ @O | = 1 0
i+ 1+ @ = 1 0
1+ 1+ | = 1 1

Minterms & Truth Tables

Cil A B Sum
0+ 0O+ @ = 0
0+ 0Ok | = 1
0 1+ @O = 1
0+ 1+ | = 0
1+ 0 @ = 1
1+ @& | = 0
1+ 1+ O = 0
1+ 1+ | = 1

Minterms & Truth Tables

- Minterms are true for a single combination of inputs

- This is essentially selecting a row of a truth table

Minterms & Truth Tables

o Sum W= Cl, A DB

0+ 0+ § = 0

0+ 0+ 1 = 1 - Where/when is Sum true (any
n . H ; place)?

0+ 1+ 1 = 0

1+ 0 6§ - 1

1+ 0O | - 0

1+ I 8 - 0

1+ 1+ 1 - 1

Minterms & Truth Tables

Cil A B Sum
0+ 0O+ @ = 0
0+ 0Ok | = 1
0 1+ @O = 1
0+ 1+ | = 0
1+ 0 @ = 1
1+ @& | = 0
1+ 1+ O = 0
1+ 1+ | = 1

o —05. CILA B

- \Where/when is any of these
true?

P — (L] -A B+
£l 4°D +
Ll A "B+
Ci'A-'B

Truth Table -> Sum of Minterms

https://en.wikipedia.org/wiki/Canonical_form

Important!

- Any simple function (mapping) can be represented as a truth table
e N-bit binary numbers can be used to represent all the inputs
. The table will need 2™ rows to represent all the possible combinations of inputs
« M-bit binary numbers can represent the output(s)
- Each of the m bits of output can be represent by a sum-of-products (sum of minterms) equation.

- There's a minterm for each place the bit of m is a 1 (true)

. Canonical form = The “sum” of these Minterms

Sum-of-Products

- All our combinational logic could be represented in a table
- All the outputs can be represented as equations
- Those equations can be realized with just the concept of AND, OR, & NOT

- |.e., we can build computing machines for anything we can represent in a table
If we have AND, OR, or NOT.

- The idea of Tables and "Look Up Tables” (LUTSs) is really useful!

Product-Of-Sums

- Alternative to SOP: Uses maxterms (SUM of all input variables) in large product

. Form: ¥ = (A - B NG @

.- Can be constructed from table by focusing on:

1) rows with zeros => each a "sum” for a zero in only that row
and

2) products that will combine them

. Sum-of-Prod: Smaller when more 1s than Os in table;
Otherwise Prod-of-Sums is smaller

- This class: slightly focused on Look-up Table (LUT) concept / usually favor SOP

Real Circuits: Xs and Zs

- Os and 1s represent real-world, continuous values, like voltages

- Ex:0=0v (gnd); 1=>5v
» What's 2.3v?

- What happens if a Ov wire is connected to 5v wire?
("Contention™)

- X: That's illegal / don’t know

Simulator / Language Types

- Bits & Types: 10101100 can have different interpretations
- Programming languages use data types

. Verilog (Chapter 4)'s logic type:

« 0,1, X (unknown), Z (high-impedance)

. Other simulators often use X for initial value

(Helps catch errors and misunderstandings earlier vs. building on a bad
assumption!)

Real Circuits: Xs and Zs

- Os and 1s represent real-world, continuous values, like voltages
- Ex:0=0v (gnd); 1 = 5v (relative to that ground)

- Voltage Is a relative measure
(like water pressure: it's the difference between two points)

- Z: "Floating” value / disconnected

. Sometimes useful to “"disconnect” something to prevent contention
(to share wires with different things in control at different times)

. Sometimes an error when nothing is connected

(Behavior depends on technology and conditions; Can be random or influenced by external things — like
moving a hand near a circuit!)

Circuit “Optimization”

- Time or performance”?

- Number of parts?

. Total cost?

- Combination: E.g., Cheapest way to achieve a specific level of performance

Circuit “Optimization”

- Logic Minimization

. Canonical Form is seldom the minimum number of parts
- Can “combine” overlapping terms ()

- Prime Implicant: Can't be further reduced

. ExxA-B-C+A-B-C

. True when A - C. The B and B cancel

https://en.wikipedia.org/wiki/Implicant

Karnaugh (K) Maps

- A visual way to do term optimization

- Rely on tables that allow easy identification of ways to combine implicants

- Uses Gray code ordering, not counting order!!!

. Only useful for up to 4 variables. |l.e., small problems

Karnaugh (K) Maps

. Goal: Cover all 1s with circles

- As few circles as possible & as large as possible
- Span rectangles with sides of 1, 2, 4, or 8

. Top/bottom and left/right wrap!

Give an opt. equation for...

D1/D0

00

Inputs Output
S D1 DO O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Give an opt. equation for...

D1/D0

00

01

11

10

Inputs Output
S D1 DO O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Give an opt. equation for...

D1 DO

Inputs Output
S D1 DO O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

00 01 11
D1 changes

10

DO changes

Give an opt. equation for...

D1 DO

Inputs Output
S D1 DO O
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

21

- DO

00 01 11

10

E2: Give an opt. equation for...

B/C

00

01

11

10

Inputs Output
A B @ O
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

E3: Give an equation for...

iZ

00

01

11

10

Inputs Output
X Y % O
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

- Sometimes there

are input
combinations that
can hever occur

- Rather than specifty
a default value, we
can use "X for
Don’t Care

. This often results In

simpler Boolean
equations

Don’t cares in K-maps

IN a CIICUuUl

ight limitation

tance and resistance

off

Speed of |

i

- Caused by
Capac

Propagation & Contamination Delay

. Propagation delay: t,; = max delay from >
iInput to output

- Contamination delay: t., = min delay from
iInput to output

- Reasons why t 4 and t.; may be different:

- Different rising and falling delays (e.g., n-
VS p-type transistors)

- Multiple inputs and outputs, some of which
are faster than others

- Temperature of the circuit: Circuits slow
down when hot and speed up when cold

=

=
L,

=)

o
N

i

-

Short Path

2.8: More Parts

- Q: We want a 4-to-1 multiplexor. How big is the full truth table?
- Q: Our CPU may need a 32-to-1 multiplexor. How big is the truth table?
- \We need a new approach

. Hierarchical construction

Hierarchical Approach

- We've created a 2-to-1 MUX

. Construct a 4-to-1 MUX using 2-to-1 MUXes

- Focus on desired behavior using existing parts

4-to-1 MUX Behavior

- Behavioral Description as a Table

Inputs of Interest

Output (In terms

of Inputs)
S1 SO O
0 0 [0
0 1 |1
1 0 12

13

Hierarchical Construction of 4-input
IVlix

Questions

- There are a lot of different logic gates, do we have to memorize them all?

- NOT, AND, OR are the basic gates; others are related to them: XOR, XNOR, NAND, NOR

- The two's complement system is a little new and confusing to me.

- How do engineers design and manage systems built around hundreds or even thousands of logic gates?

- Modern designs use an HDL language such as SystemVerilog or VHDL to express the logic or behavior of the circuit.
Tools called logic synthesizers will optimize these logic circuits.

- Hard time understanding hexadecimal. Specifically, confused about converting between hexadecimal to binary/decimal
and vice versa.

- Hex Is a convenient way to express binary that is more human read/writable, particularly when there is a large
number of binary digits. There is a one-to-one correspondence between hex and binary (can write a table for this).
For conversion to/from decimal, then a place value method can be used to convert decimal to hex, or express the hex
digits in a formula to convert back to decimal in terms of base 16 for each digit.

Review [Catchup

- SOP equations
- Table to describe behavior
- Product equation for "matching” exact pattern
- Sum of Products for full, single-bit behavior
- Overall circuit structure
- Pros: Can’t go wrong! Can build any machine....Can be messy though.

- Product of sums: Apply DeMorgan's law or focus on 0Os and construct

	Slide 1: CSE 2600 Intro. To Digital Logic & Computer Design
	Slide 2: Announcements
	Slide 3: Studio 2A Highlights
	Slide 4: Last Time
	Slide 5: Last Time
	Slide 6: Last Time
	Slide 7: Last Time
	Slide 8: Last Time
	Slide 9: Last Time
	Slide 10: Last Time
	Slide 11: Last Time
	Slide 12: Last Time
	Slide 13: Last Time
	Slide 14: Last Time
	Slide 15: Last Time
	Slide 16: Last Time
	Slide 17: Last Time
	Slide 18: Last Time
	Slide 19: Last Time
	Slide 20: Last Time
	Slide 21: Last Time: Tee
	Slide 22: Last Time
	Slide 23: Chapter 2
	Slide 24: Background: Minterms
	Slide 25: Chapter 2: Minterms
	Slide 26: Minterms & Truth Tables
	Slide 27: Minterms & Truth Tables
	Slide 29: Minterms & Truth Tables
	Slide 30: Minterms & Truth Tables
	Slide 31: Minterms & Truth Tables
	Slide 32: Important!
	Slide 33: Sum-of-Products
	Slide 37: Product-Of-Sums
	Slide 38: Real Circuits: Xs and Zs
	Slide 39: Simulator / Language Types
	Slide 40: Real Circuits: Xs and Zs
	Slide 41: Circuit “Optimization”
	Slide 42: Circuit “Optimization”
	Slide 43: Karnaugh (K) Maps
	Slide 44: Karnaugh (K) Maps
	Slide 45: Give an opt. equation for…
	Slide 46: Give an opt. equation for…
	Slide 47: Give an opt. equation for…
	Slide 48: Give an opt. equation for…
	Slide 49: E2: Give an opt. equation for…
	Slide 50: E3: Give an equation for…
	Slide 51: Don’t cares in K-maps
	Slide 52: Timing
	Slide 53: Propagation & Contamination Delay
	Slide 54: Delay Calculation
	Slide 55: 2.8: More Parts
	Slide 56: Hierarchical Approach
	Slide 57: 4-to-1 MUX Behavior
	Slide 58: Hierarchical Construction of 4-input Mix
	Slide 59: Questions
	Slide 63: Review / Catchup

