
CSE 2600

Intro. To Digital Logic & Computer Design

Bill Siever

&

Michael Hall

Announcements

• Office hours: Posted but there may be updates. See “help” page in Canvas or

course site

• Homework 2B should be posted today / Due Sunday at 11:59pm

• Dropboxes posted around Thursday

• Working on scheduling “Studio Lead” sessions. Be sure to complete the survey

posted in Canvas (Piazza post @24)

https://washu-cse260m-sp25.github.io/
https://piazza.com/class/med947uhz934lp/post/24

Studio 2A Highlights

• Unsigned number line

• Two’s complement

Last Time

• Studio: Binary Number Lines Extended

Binary:

Decimal: 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

Last Time

• Studio: Binary Number Lines Extended

Binary:

Decimal:
0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

8 9 10 11 12 13 14 15

000 001 010 011 100 101 110 111

Last Time

• Studio: Binary Number Lines Extended

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

8 9 10 11 12 13 14 15

1000 1001 1010 1011 1100 1101 1110 1111

Last Time

• Studio: Binary Number Lines Extended

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

8 9 10 11 12 13 14 15

1000 1001 1010 1011 1100 1101 1110 1111

Last Time

• Studio: Two’s Complement

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

-8 -7 -6 -5 -4 -3 -2 -1

1000 1001 1010 1011 1100 1101 1110 1111

Last Time

• Studio: Two’s Complement

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

-8 -7 -6 -5 -4 -3 -2 -1

1000 1001 1010 1011 1100 1101 1110 1111

Last Time

• Studio: Two’s Complement - Above/Below

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

-8 -7 -6 -5 -4 -3 -2 -1

1000 1001 1010 1011 1100 1101 1110 1111

Last Time

• Studio: Two’s Complement - Above/Below & Bitwise Inversion

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

1111 1110 1101 1100 1011 1010 1001 1000

 -1 -2 -3 -4 -5 -6 -7 -8Decimal:
Binary:

Last Time

• Studio: Two’s Complement - Mathematical Negation (−1 ×)

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

1111 1110 1101 1100 1011 1010 1001 1000

 -1 -2 -3 -4 -5 -6 -7 -8Decimal:
Binary:

Last Time

• Studio: Two’s Complement - Mathematical Negation (−1 ×6)

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

1111 1110 1101 1100 1011 1010 1001 1000

 -1 -2 -3 -4 -5 -6 -7 -8Decimal:
Binary:

Last Time

• Studio: Two’s Complement - Mathematical Negation (−1 ×6)

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

1111 1110 1101 1100 1011 1010 1001 1000

 -1 -2 -3 -4 -5 -6 -7 -8Decimal:
Binary:

Last Time

• Studio: Two’s Complement - Mathematical Negation (−1 ×6)

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

1111 1110 1101 1100 1011 1010 1001 1000

 -1 -2 -3 -4 -5 -6 -7 -8Decimal:
Binary:

Last Time

• Studio: Two’s Complement - Mathematical Negation (−1 ×-6)

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

1111 1110 1101 1100 1011 1010 1001 1000

 -1 -2 -3 -4 -5 -6 -7 -8Decimal:
Binary:

Last Time

• Studio: Two’s Complement - Mathematical Negation (−1 ×-6)

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

1111 1110 1101 1100 1011 1010 1001 1000

 -1 -2 -3 -4 -5 -6 -7 -8Decimal:
Binary:

Last Time

• Studio: Two’s Complement - Mathematical Negation (−1 ×-6)

Binary:

Decimal:
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111

1111 1110 1101 1100 1011 1010 1001 1000

 -1 -2 -3 -4 -5 -6 -7 -8Decimal:
Binary:

Last Time

• Studio: Two’s Complement - Mathematical Negation (−1 ×A)

• Logic: 𝐴 + 1

• We are assumed to have “machines” for both;

• Bitwise inversion (𝑛 invertors) and 𝑛-bit addition

(more to come on 𝑛-bit addition)

Last Time

• Assume an 𝑛 bit adder, like:

• 𝑛 bit subtractor can be built:

Last Time: Tee

• 𝑡𝑏 + 𝑡𝑏

• Theorem / Dual T5’: 𝐵 + 𝐵 = 1

• Therefore “1”

• Eventually… JLS

Last Time

• JLS Logic Types: Unsigned & Assumes values are 0 at 𝑡 = 0

Chapter 2

• Tables & Sum-of-products

• A “can’t go wrong” way to build logic that behaves a specified way

• Karnaugh Maps: A form of optimization

• Timing: Delay of circuits

Background: Minterms

• Minterms: Given 𝑛 variables, a product (AND) containing all 𝑛 exactly once, in

either their original or negated form

• Consider: 𝐴 ⋅ 𝐵 ⋅ 𝐶 ⋅ 𝐷
Identify all possible combinations of inputs which make it true:

Chapter 2: Minterms

• Consider 𝑛 = 3 and 𝐴, 𝐵, 𝐶; Which are Minterms? Which are not and why?

• 𝐴𝐵𝐶

• 𝐴𝐵𝐴

• 𝐶𝐵𝐴

• 𝐴𝐶

Minterms & Truth Tables

CI A B Carry Out Sum

0+ 0+ 0 = 0 0

0+ 0+ 1 = 0 1

0+ 1+ 0 = 0 1

0+ 1+ 1 = 1 0

1+ 0+ 0 = 0 1

1+ 0+ 1 = 1 0

1+ 1+ 0 = 1 0

1+ 1+ 1 = 1 1

Minterms & Truth Tables

CI A B Sum

0+ 0+ 0 = 0

0+ 0+ 1 = 1

0+ 1+ 0 = 1

0+ 1+ 1 = 0

1+ 0+ 0 = 1

1+ 0+ 1 = 0

1+ 1+ 0 = 0

1+ 1+ 1 = 1

Minterms & Truth Tables

• Minterms are true for a single combination of inputs

• This is essentially selecting a row of a truth table

Minterms & Truth Tables

CI A B Sum

0+ 0+ 0 = 0

0+ 0+ 1 = 1

0+ 1+ 0 = 1

0+ 1+ 1 = 0

1+ 0+ 0 = 1

1+ 0+ 1 = 0

1+ 1+ 0 = 0

1+ 1+ 1 = 1

• 𝑛 = 3: 𝐶𝐼, 𝐴, 𝐵

• Where/when is Sum true (any

place)?

𝑆𝑢𝑚 = 𝐶𝐼 ⋅ 𝐴 ⋅ 𝐵 +

Minterms & Truth Tables

CI A B Sum

0+ 0+ 0 = 0

0+ 0+ 1 = 1

0+ 1+ 0 = 1

0+ 1+ 1 = 0

1+ 0+ 0 = 1

1+ 0+ 1 = 0

1+ 1+ 0 = 0

1+ 1+ 1 = 1

• 𝑛 = 3: 𝐶𝐼, 𝐴, 𝐵

• Where/when is any of these

true?

𝑆𝑢𝑚 =
𝐶𝐼 ⋅ 𝐴 ⋅ 𝐵 +
𝐶𝐼 ⋅ 𝐴 ⋅ 𝐵 +
𝐶𝐼 ⋅ 𝐴 ⋅ 𝐵

Truth Table -> Sum of Minterms

Canonical Form

https://en.wikipedia.org/wiki/Canonical_form

Important!

• Any simple function (mapping) can be represented as a truth table

• 𝑛-bit binary numbers can be used to represent all the inputs

• The table will need 2𝑛 rows to represent all the possible combinations of inputs

• 𝑚-bit binary numbers can represent the output(s)

• Each of the 𝑚 bits of output can be represent by a sum-of-products (sum of minterms) equation.

• There’s a minterm for each place the bit of 𝑚 is a 1 (true)

• Canonical form = The “sum” of these Minterms

Sum-of-Products

• All our combinational logic could be represented in a table

• All the outputs can be represented as equations

• Those equations can be realized with just the concept of AND, OR, & NOT

• I.e., we can build computing machines for anything we can represent in a table

if we have AND, OR, or NOT.

• The idea of Tables and “Look Up Tables” (LUTs) is really useful!

Product-Of-Sums

• Alternative to SOP: Uses maxterms (SUM of all input variables) in large product

• Form: 𝑌 = (𝐴 + 𝐵 + 𝐶) ⋅ (𝐴 + 𝐵 + 𝐶)⋯

• Can be constructed from table by focusing on:

 1) rows with zeros => each a “sum” for a zero in only that row

and

 2) products that will combine them

• Sum-of-Prod: Smaller when more 1s than 0s in table;

Otherwise Prod-of-Sums is smaller

• This class: slightly focused on Look-up Table (LUT) concept / usually favor SOP

Real Circuits: Xs and Zs

• 0s and 1s represent real-world, continuous values, like voltages

• Ex: 0 = 0v (gnd); 1 = 5v

• What’s 2.3v?

• What happens if a 0v wire is connected to 5v wire?

(“Contention”)

• X: That’s illegal / don’t know

Simulator / Language Types

• Bits & Types: 10101100 can have different interpretations

• Programming languages use data types

• Verilog (Chapter 4)’s logic type:

• 0, 1, X (unknown), Z (high-impedance)

• Other simulators often use X for initial value

(Helps catch errors and misunderstandings earlier vs. building on a bad

assumption!)

Real Circuits: Xs and Zs

• 0s and 1s represent real-world, continuous values, like voltages

• Ex: 0 = 0v (gnd); 1 = 5v (relative to that ground)

• Voltage is a relative measure

(like water pressure: it’s the difference between two points)

• Z: “Floating” value / disconnected

• Sometimes useful to “disconnect” something to prevent contention

(to share wires with different things in control at different times)

• Sometimes an error when nothing is connected

(Behavior depends on technology and conditions; Can be random or influenced by external things — like

moving a hand near a circuit!)

Circuit “Optimization”

• Time or performance?

• Number of parts?

• Total cost?

• Combination: E.g., Cheapest way to achieve a specific level of performance

Circuit “Optimization”

implicants / product

• Logic Minimization

• Canonical Form is seldom the minimum number of parts

• Can “combine” overlapping terms (implicants / product)

• Prime Implicant: Can’t be further reduced

• Ex: 𝐴 ⋅ 𝐵 ⋅ 𝐶 + 𝐴 ⋅ 𝐵 ⋅ 𝐶

• True when 𝐴 ⋅ 𝐶. The 𝐵 and 𝐵 cancel

https://en.wikipedia.org/wiki/Implicant

Karnaugh (K) Maps

• A visual way to do term optimization

• Rely on tables that allow easy identification of ways to combine implicants

• Uses Gray code ordering, not counting order!!!

• Only useful for up to 4 variables. I.e., small problems

Karnaugh (K) Maps

• Goal: Cover all 1s with circles

• As few circles as possible & as large as possible

• Span rectangles with sides of 1, 2, 4, or 8

• Top/bottom and left/right wrap!

Give an opt. equation for…

Inputs Output

S D1 D0 O

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

D1/D0

00 ?? ?? ??

S

0

1

Give an opt. equation for…

Inputs Output

S D1 D0 O

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

D1/D0

00 01 11 10

S

0

1

Give an opt. equation for…

Inputs Output

S D1 D0 O

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

D1 D0

00 01 11 10

S

0 0 1 1 0

1 0 0 1 1

D1 changes

D0 changes

Give an opt. equation for…

Inputs Output

S D1 D0 O

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

D1 D0

00 01 11 10

S

0 0 1 1 0

1 0 0 1 1

𝑆 ⋅ 𝐷0

𝑆 ⋅ 𝐷1

E2: Give an opt. equation for…

Inputs Output

A B C O

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

B/C

00 01 11 10

A

0

1

E3: Give an equation for…

Inputs Output

X Y Z O

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

Y/Z

00 01 11 10

X

0

1

Don’t cares in K-maps

• Sometimes there

are input

combinations that

can never occur

• Rather than specify

a default value, we

can use “X” for

Don’t Care

• This often results in

simpler Boolean

equations

0

C D
0 0

0 1

1 0

1 1

B
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

0

X

1

1

YA
0

0

0

0

0

0

0

0

0 0

0 1

1 0

1 1

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X

X

X

X

X

X

01 11

1

0

0

X

X

X

1

101

1

1

1

1

X

X

X

X

11

10

00

00

10
AB

CD

Y

𝑌 = 𝐴 + 𝐵 𝐷 + 𝐶

Timing

• Delay: time between input change and

output changing

• Determines how fast we can build circuits

• Caused by

• Capacitance and resistance in a circuit

• Speed of light limitation

A

Y

Time

delay

A Y

Propagation & Contamination Delay
• Propagation delay: tpd = max delay from

input to output

• Contamination delay: tcd = min delay from

input to output

• Reasons why tpd and tcd may be different:

• Different rising and falling delays (e.g., n-

vs p-type transistors)

• Multiple inputs and outputs, some of which

are faster than others

• Temperature of the circuit: Circuits slow

down when hot and speed up when cold

A

Y

Time

A Y

t
pd

t
cd

Delay Calculation

Critical (Long) Path: tpd = 2tpd_AND + tpd_OR

(max delay)

Short Path: tcd = tcd_AND

(min delay)

A
B

C

D Y

Critical Path

Short Path

n1

n2

2.8: More Parts

• Q: We want a 4-to-1 multiplexor. How big is the full truth table?

• Q: Our CPU may need a 32-to-1 multiplexor. How big is the truth table?

• We need a new approach

• Hierarchical construction

Hierarchical Approach

• We’ve created a 2-to-1 MUX

• Construct a 4-to-1 MUX using 2-to-1 MUXes

• Focus on desired behavior using existing parts

4-to-1 MUX Behavior

• Behavioral Description as a Table
Inputs of Interest

Output (In terms

of Inputs)

S1 S0 O

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Hierarchical Construction of 4-input

Mix

Questions

• There are a lot of different logic gates, do we have to memorize them all?

• NOT, AND, OR are the basic gates; others are related to them: XOR, XNOR, NAND, NOR

• The two’s complement system is a little new and confusing to me.

• How do engineers design and manage systems built around hundreds or even thousands of logic gates?

• Modern designs use an HDL language such as SystemVerilog or VHDL to express the logic or behavior of the circuit.
Tools called logic synthesizers will optimize these logic circuits.

• Hard time understanding hexadecimal. Specifically, confused about converting between hexadecimal to binary/decimal
and vice versa.

• Hex is a convenient way to express binary that is more human read/writable, particularly when there is a large
number of binary digits. There is a one-to-one correspondence between hex and binary (can write a table for this).
For conversion to/from decimal, then a place value method can be used to convert decimal to hex, or express the hex
digits in a formula to convert back to decimal in terms of base 16 for each digit.

Review / Catchup

• SOP equations

• Table to describe behavior

• Product equation for “matching” exact pattern

• Sum of Products for full, single-bit behavior

• Overall circuit structure

• Pros: Can’t go wrong! Can build any machine….Can be messy though.

• Product of sums: Apply DeMorgan’s law or focus on 0s and construct

	Slide 1: CSE 2600 Intro. To Digital Logic & Computer Design
	Slide 2: Announcements
	Slide 3: Studio 2A Highlights
	Slide 4: Last Time
	Slide 5: Last Time
	Slide 6: Last Time
	Slide 7: Last Time
	Slide 8: Last Time
	Slide 9: Last Time
	Slide 10: Last Time
	Slide 11: Last Time
	Slide 12: Last Time
	Slide 13: Last Time
	Slide 14: Last Time
	Slide 15: Last Time
	Slide 16: Last Time
	Slide 17: Last Time
	Slide 18: Last Time
	Slide 19: Last Time
	Slide 20: Last Time
	Slide 21: Last Time: Tee
	Slide 22: Last Time
	Slide 23: Chapter 2
	Slide 24: Background: Minterms
	Slide 25: Chapter 2: Minterms
	Slide 26: Minterms & Truth Tables
	Slide 27: Minterms & Truth Tables
	Slide 29: Minterms & Truth Tables
	Slide 30: Minterms & Truth Tables
	Slide 31: Minterms & Truth Tables
	Slide 32: Important!
	Slide 33: Sum-of-Products
	Slide 37: Product-Of-Sums
	Slide 38: Real Circuits: Xs and Zs
	Slide 39: Simulator / Language Types
	Slide 40: Real Circuits: Xs and Zs
	Slide 41: Circuit “Optimization”
	Slide 42: Circuit “Optimization”
	Slide 43: Karnaugh (K) Maps
	Slide 44: Karnaugh (K) Maps
	Slide 45: Give an opt. equation for…
	Slide 46: Give an opt. equation for…
	Slide 47: Give an opt. equation for…
	Slide 48: Give an opt. equation for…
	Slide 49: E2: Give an opt. equation for…
	Slide 50: E3: Give an equation for…
	Slide 51: Don’t cares in K-maps
	Slide 52: Timing
	Slide 53: Propagation & Contamination Delay
	Slide 54: Delay Calculation
	Slide 55: 2.8: More Parts
	Slide 56: Hierarchical Approach
	Slide 57: 4-to-1 MUX Behavior
	Slide 58: Hierarchical Construction of 4-input Mix
	Slide 59: Questions
	Slide 63: Review / Catchup

