CSE 2600 Intro. To Digital Logic & Computer Design

Bill Siever & Michael Hall

Announcements

- Prep 2 was due at 11 AM today (will be accepted late for late enrollments to the class).
- Homework 1: Due tomorrow (Wednesday) at 11:59 PM.
- First update on office hours posted by Wednesday. Use Piazza for any immediate needs/questions.

Homework 2A

- Posted
 - Due Sunday at 11:59pm
 - Includes JLS part
 - Gradescope dropboxes will be available by Thursday

Review

Chapter 2: Combinational Logic

- 1. Intro.
- 2. Boolean Equations
- 3. Boolean Algebra
- 4. From Logic to Gates

2.1 Intro: Combinational Logic

- (Purely) Combine inputs to produce outputs
 - Output depends only on current input, not past inputs
- Behavior of all combinational logic can be described with a table

Binary Addition Rules: Fully Elaborated

0+	0+	0	=	00
0+	0+	1	=	01
0+	1+	0	=	01
0+	1+	1	=	10
1+	0+	0	=	01
1+	0+	1	=	10
1+	1+	0	=	10
4.	1+	1	_	11

Binary Addition Rules: Inputs

Carry	A	В		Sum
0+	0+	0	=	00
0+	0+	1	=	01
0+	1+	0	=	01
0+	1+	1	=	10
1+	0+	0	=	01
1+	0+	1	=	10
1+	1+	0	=	10
1+	1+	1	=	11

Binary Addition Rules: & Outputs

Carry In	Α	В		Carry Out	Sum
0+	0+	0	=	0	0
0+	0+	1	=	0	1
0+	1+	0	=	0	1
0+	1+	1	=	1	0
1+	0+	0	=	0	1
1+	0+	1	=	1	0
1+	1+	0	=	1	0
1+	1+	1	=	1	1

"Tables"

- Consider a function that has n inputs and m, 1-bit outputs Describe the shape / size of the complete table?
- Consider a function that has n inputs and 2, 3-bit output
 Describe the shape / size of the complete table?

Truth Tables

Give the truth table for

Truth Tables

Give the truth table for

2.2 Boolean Equations - History

- George: Mathematical Analysis of Logic
- Formal, algebraic approach to manipulation of binary concepts
- · So?
 - Provide formal approach to manipulate concepts

2.4 Gates

- Not just electronics:
 - Scientific American, Vol. 258, No. 4 (APRIL 1988), pp. 118-121 (4 pages)
- Claude: Thesis

Boolean Algebra

Table 2.1 Axioms of Boolean algebra

	Axiom		Dual	Name
A1	$B=0 \text{ if } B \neq 1$	A1′	$B=1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
Α3	$0 \cdot 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \cdot 1 = 1 \cdot 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

Boolean Algebra

Table 2.2 Boolean theorems of one variable

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \cdot 0 = 0$	T2′	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{B} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

Boolean Algebra

Table 2.3 Boolean theorems of several variables

	Theorem		Dual	Name
Т6	$B \bullet C = C \bullet B$	T6′	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C) + D = B + (C+D)	Associativity
Т8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ $= (B \bullet C) + (\overline{B} \bullet D)$	T11′	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots}$ $= (\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots)$	T12′	$\overline{B_0 + B_1 + B_2 \dots}$ $= (\overline{B}_0 \bullet \overline{B}_1 \bullet \overline{B}_2 \dots)$	De Morgan's Theorem

Bubble Pushing

Sum of Products Form

SOP – sum-of-products

C	M	E	minterm
0	0	0	CM
0	1	0	C M
1	0	1	CM
1	1	0	C M

Product of Sums Form

POS – product-of-sums

C	M	E	maxterm
0	0	0	C + M
0	1	0	$C + \overline{M}$
1	0	1	$\overline{C} + M$
1	1	0	C + M

Compare / Contrast

Combinational Logic vs. Sequential Logic

- Output of Sequential Logic
 - Depends on current inputs and sequence of past inputs (values and order)
 - Requires concept of memory

Exercise (putting it all together)

- Write sum-of-products form for a truth table of 3 terms (Exercise 2.1c)
- Simplify using Boolean algebra
- Draw circuit schematic
- Draw circuit in JLS
- Run logic simulation of circuit

Demos of Circuits in JLS

- Overview of parts / ideas
 - Equation: D = A*B*C
 - Bubble Pushing
 - DeMorgan's Laws?

Timing & Simulation

Next Time

- Studio
 - Prep work will be posted
 - Install JLS
 - Check Email for attendance code
 - Check-in process (for class attendance)
 - https://washu-cse2600-fl25.github.io/studio_attendance/