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(Questions welcome at any time)



Who?

• Us: Bill Siever & Michael Hall  

• Bill: Teaching Prof. In CSE 

• Michael: Lecturer in CSE/ESE



Who?

• You? 

• Mix of Computer Engineering, Electrical Engineering, and C.S. Majors 

• Many in Dual Degree program 

• Prerequisites: Intro. To Computer Science (Programming) 

• Other related courses? 1302? 3601? 3602?



What?

• Digital Logic! 

• Digital: Usually about binary-based systems 

• Q: Why binary? 

• Computer Design 

• Focus on Architecture: How Digital Logic is Used for a Modern Computer



When?

• Class (now): Tues/Thurs 2:30-3:50 

• Instructor & TA Office Hours: TBD



Where?

• Hillman 60 (ish) 
    (May be different on future Tuesdays — TBD)



Why?

• Digital logic is critical to 

• All of computing 

• Recent advances in A.I./M.L. 

• Understanding system-level behavior of computers



Why?

• Deep understanding benefits: 

• Design at all levels (hardware, software/API) 

• Debugging 

• Integration of knowledge 

• Bring together lots of classes / topics



How?

• Overview of Syllabus / Schedule / Webpage 

• https://wustl.instructure.com/courses/154176  

https://wustl.instructure.com/courses/154176


How?

• Summary:  

• For credit:  Exams, Homework, Studios, Studio Lead duties, Prep work 
summaries 

• For prep: Lectures/discussion, Prep work (reading, videos, etc.)



Tools / Resources

• Website vs. Canvas 

• Canvas, Gradescope, Github 

• Forum: Piazza



Challenges

• Significant change in content from some prior years 

• Still being refined — you will be a part of continued refinement 

• There will be some challenges & problems  

• That’s common in engineering 

• We’ll focus on helping you learn the critical concepts despite setbacks





Chapter 1 Sections

1. The Game Plan 

2. Managing Complexity 

3. Digital Abstraction 

4. Number Systems 

5. Logic Gates



Course

fo
cu

s 
of

 th
is

 c
ou

rs
e

programs

device drivers

instructions
registers

datapaths
controllers

adders
memories

AND gates
NOT gates

amplifiers
filters

transistors
diodes

electrons

But 
Architecture 
before Micro



Abstraction

• Digital discipline 

• Discrete values 

• Moreover, binary (0/1; false/true; Off/On; 0v/3v; No/Yes; …) 

• Smallest unit of information: a binary digit.  Also-know-as a Bit 

• (Mostly) Starting at gate level



Goals Today

• Review / Learn (Unsigned) Binary Representations 

• Learn Binary Addition 

• Review Binary Operations 

• Consider Machines for Binary Operations
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Binary Basics: Number Line

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7



Conversions



Place Value: Base 10 
Example: 123

Digits 1 2 3

Place Value 100 10 1

Place Value 
In terms of 

Base
102 101 100

Expansion 1×102 +2×101 +3×100



Place Value: Base 2 
Example: 1102 (or 3’b110)

Digits 1 1 0

Place Value 
(Decimal) 4 2 1

Place Value 
In terms of 

Base
22 21 20

Expansion 1×22 +1×21 +0×20



Easy Conversion: Binary to Decimal

Place 
Value 

(Decimal)
128 64 32 16 8 4 2 1

Place 
Value 

In terms 
of Base

27 26 25 24 23 22 21 20



Problem:  What is the decimal value of 
5’b10011

Place 
Value 

(Decimal)
128 64 32 16 8 4 2 1

Place 
Value 

In terms 
of Base

27 26 25 24 23 22 21 20



Easy Conversion: Decimal to Binary 
Greedy Algorithm Approach: Right to Left
1. Start with value  

2.Find the exponent, , of the largest power of 2 that is smaller than .   
(I.e., first power of 2 that can be subtracted without going negative) 

3.For  down to 0: 

1.If  

1. Write down a 1 (and move right) 

2.  

2.Else  

1.Write down a 0 (and move right)

n

k n

k

2k ≤ n

n = n − 2k



Example: Convert 27 to binary 
(With the greedy approach)

• First power of 2 less than 27 

• 16  ( ) 

•  

•  

•  

•

24

n = 27 − 16 = 11

n = 11 − 8 = 3

n = 3 − 2 = 1

n = 1 − 1 = 0

Place 
Value  128 64 32 16 8 4 2 1

Place 
Value  27 26 25 24 23 22 21 20

Result 1 1 0 1 1



Arithmetic



Decimal Addition



Decimal Addition: Bunch of Rules

Decimal: 0 1 2 3 4 5 6 7

Rules just “encode” moving right on the number line
Ex: 1+2
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Decimal Addition: Bunch of Rules

Decimal: 0 1 2 3 4 5 6 7

Rules just “encode” moving right on the number line
Ex: 1+2



Binary Addition Rules

• Condensed 

• No ones:     0+0+0 = 00 

• One one:     0+0+1 = 01 

• Two Ones:   0+1+1 = 10 

• Three Ones: 1+1+1 =11



Binary Addition Rules: Fully Elaborated
0+ 0+ 0 = 00

0+ 0+ 1 = 01

0+ 1+ 0 = 01

0+ 1+ 1 = 10

1+ 0+ 0 = 01

1+ 0+ 1 = 10

1+ 1+ 0 = 10

1+ 1+ 1 = 11



Problem

• Add 4’b1010 + 4’b0011



Review: Operations on Booleans



Review: Boolean Logic Operations

LOGIC 
OPERATION

COMMON 
PROG. LANG. 

SYMBOLS

FIRST-ORDER 
LOGIC DIGITAL LOGIC

And &&, and ∧ * 
(multiplication)

Or ||, or ∨ +

Not / Negation !, not ¬ /  
(also line over)



Gates: Conceptual Machines for 
Boolean Ops

LOGIC 
OPERATION

COMMON 
PROG. LANG. 

SYMBOLS

FIRST-ORDER 
LOGIC DIGITAL LOGIC GATE

And &&, and ∧ * 
(multiplication) See here

Or ||, or ∨ + See here

Not / Negation !, not ¬ /  
(also line over) See here

https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/Inverter_(logic_gate)


Gates: Machines for Boolean Ops 
(A look at “Computer Engineering for Babies”)

https://computerengineeringforbabies.com/


For Thursday

• Read Chapter 1: 1.1-1.5  

• Complete the questions (Canvas) before 11am (not officially due) 

• Future prep work questions are 11:59pm on Mondays 

• Reading is almost all of Chapters 1-7.  Can work ahead!



Homework #1 Posted! 
Dropbox available on Thursday (28th) 
Due next Wednesday (September. 3rd)



What’s the operation?

• Consider the following 
problems: 

• 123 ? 10 = 3 

• 7 ? 10 = 7 

• 29 ? 10 = 9

• Consider the following 
problems: 

• 123 ? 100 = 23 

• 7 ? 100 = 7 

• 29 ? 100 = 29



Why is that important?

• We’ll often work with fixed-width numbers 

• Ex: our rules of addition are just for 1 column of digits 

• Multi-digit numbers are handled via chaining together fixed width operations 

• Truncation to fixed width numbers is a special case of modular arithmetic 
(which has some cool properties)



Fixed Width / Truncation in Decimal

• We’ll often work with fixed-width numbers 

• Ex: our rules of addition are just for 1 column of digits 

• Multi-digit numbers are handled via chaining together fixed width operations 

• Truncation to fixed width numbers is a special case of modular arithmetic 
(which has some cool properties)



What’s the operation?

• Consider the following 
problems: 

• 123 ? 10 = 3 

• 7 ? 10 = 7 

• 29 ? 10 = 9

• Consider the following 
problems: 

• 123 ? 100 = 23 

• 7 ? 100 = 7 

• 29 ? 100 = 29



What’s the operation?

• What is the 1 digit  
result of: 

• 122 + 1 = 3 

• 3+4 = 7 

• 15+14 = 9

• What is the 2 digit  
result of: 

• 3+120 = 23 

• 2+5 = 7 

• 28+1 = 29



Modular Arithmetic & The Number Line 
(Binary, 3-bit)

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

What’s 1+2?



Modular Arithmetic & The Number Line 
(Binary, 3-bit)

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

What’s 6+2?



Challenge: Describe the result of n+7

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7



Challenge: How can you emulate n-2?

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7



The Magic of Modular Arithmetic: 
Addition can emulate subtraction!

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

2’s comp 
behavior: -4 —3 -2 -1



Consider the Upper Bit to be Negative

Place Value 
(Decimal) -4 2 1

Place Value 
In terms of Base -(22) 21 20



Consider the Upper Bit to be Negative

Place Value 
(Decimal) -4 2 1

Place Value 
In terms of Base -(22) 21 20

What is the decimal value of the 3-bit, 2’s complement numbers: 
110 
011



Consider the Upper Bit to be Negative

Place Value 
(Decimal) -4 2 1

Place Value 
In terms of Base -(22) 21 20

What is the 3-bit, 2’s complement representation of: 
2 
-4 
-5



Hexadecimal

• Convenient, compact way to deal with binary 

• Each hex digit = exactly 4 binary digits

https://en.wikipedia.org/wiki/Hexadecimal

