
CSE 260M / ESE 260
Intro. To Digital Logic & Computer Design

Bill Siever
&

Michael Hall

5W+H

(Questions welcome at any time)

Who?

• Us: Bill Siever & Michael Hall

• Bill: Teaching Prof. In CSE

• Michael: Lecturer in CSE/ESE

Who?

• You?

• Mix of Computer Engineering, Electrical Engineering, and C.S. Majors

• Many in Dual Degree program

• Prerequisites: Intro. To Computer Science (Programming)

• Other related courses? 1302? 3601? 3602?

What?

• Digital Logic!

• Digital: Usually about binary-based systems

• Q: Why binary?

• Computer Design

• Focus on Architecture: How Digital Logic is Used for a Modern Computer

When?

• Class (now): Tues/Thurs 2:30-3:50

• Instructor & TA Office Hours: TBD

Where?

• Hillman 60 (ish)
 (May be different on future Tuesdays — TBD)

Why?

• Digital logic is critical to

• All of computing

• Recent advances in A.I./M.L.

• Understanding system-level behavior of computers

Why?

• Deep understanding benefits:

• Design at all levels (hardware, software/API)

• Debugging

• Integration of knowledge

• Bring together lots of classes / topics

How?

• Overview of Syllabus / Schedule / Webpage

• https://wustl.instructure.com/courses/154176

https://wustl.instructure.com/courses/154176

How?

• Summary:

• For credit: Exams, Homework, Studios, Studio Lead duties, Prep work
summaries

• For prep: Lectures/discussion, Prep work (reading, videos, etc.)

Tools / Resources

• Website vs. Canvas

• Canvas, Gradescope, Github

• Forum: Piazza

Challenges

• Significant change in content from some prior years

• Still being refined — you will be a part of continued refinement

• There will be some challenges & problems

• That’s common in engineering

• We’ll focus on helping you learn the critical concepts despite setbacks

Chapter 1 Sections

1. The Game Plan

2. Managing Complexity

3. Digital Abstraction

4. Number Systems

5. Logic Gates

Course

fo
cu

s
of

 th
is

 c
ou

rs
e

programs

device drivers

instructions
registers

datapaths
controllers

adders
memories

AND gates
NOT gates

amplifiers
filters

transistors
diodes

electrons

But
Architecture
before Micro

Abstraction

• Digital discipline

• Discrete values

• Moreover, binary (0/1; false/true; Off/On; 0v/3v; No/Yes; …)

• Smallest unit of information: a binary digit. Also-know-as a Bit

• (Mostly) Starting at gate level

Goals Today

• Review / Learn (Unsigned) Binary Representations

• Learn Binary Addition

• Review Binary Operations

• Consider Machines for Binary Operations

Counting

Decimal

0

1

2

3

4

5

6

7

8

9

10

Counting

Decimal

00

01

02

03

04

05

06

07

08

09

10

Counting

Decimal Binary

00

01

02

03

04

05

06

07

08

09

10

Counting

Decimal Binary

00 0

01

02

03

04

05

06

07

08

09

10

Counting

Decimal Binary

00 0

01 1

02

03

04

05

06

07

08

09

10

Counting

Decimal Binary

00 0

01 1

02 ?

03

04

05

06

07

08

09

10

Counting

Decimal Binary

00 00

01 01

02 10

03

04

05

06

07

08

09

10

Counting

Decimal Binary

00 0000

01 0001

02 0010

03

04

05

06

07

08

09

10

Counting

Decimal Binary

00 0000

01 0001

02 0010

03 0011

04

05

06

07

08

09

10

Counting

Decimal Binary

00 0000

01 0001

02 0010

03 0011

04 0100

05

06

07

08

09

10

Counting

Decimal Binary

00 0000

01 0001

02 0010

03 0011

04 0100

05 0101

06

07

08

09

10

Counting

Decimal Binary

00 0000

01 0001

02 0010

03 0011

04 0100

05 0101

06 0110

07

08

09

10

Counting

Decimal Binary

00 0000

01 0001

02 0010

03 0011

04 0100

05 0101

06 0110

07 0111

08

09

10

Counting

Decimal Binary

00 0000

01 0001

02 0010

03 0011

04 0100

05 0101

06 0110

07 0111

08 1000

09

10

Counting

Decimal Binary

00 0000

01 0001

02 0010

03 0011

04 0100

05 0101

06 0110

07 0111

08 1000

09 1001

10

Counting

Decimal Binary

00 0000

01 0001

02 0010

03 0011

04 0100

05 0101

06 0110

07 0111

08 1000

09 1001

10 1010

Binary Basics: Number Line

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

Conversions

Place Value: Base 10
Example: 123

Digits 1 2 3

Place Value 100 10 1

Place Value 
In terms of

Base
102 101 100

Expansion 1×102 +2×101 +3×100

Place Value: Base 2
Example: 1102 (or 3’b110)

Digits 1 1 0

Place Value 
(Decimal) 4 2 1

Place Value 
In terms of

Base
22 21 20

Expansion 1×22 +1×21 +0×20

Easy Conversion: Binary to Decimal

Place
Value 

(Decimal)
128 64 32 16 8 4 2 1

Place
Value 

In terms
of Base

27 26 25 24 23 22 21 20

Problem: What is the decimal value of
5’b10011

Place
Value 

(Decimal)
128 64 32 16 8 4 2 1

Place
Value 

In terms
of Base

27 26 25 24 23 22 21 20

Easy Conversion: Decimal to Binary 
Greedy Algorithm Approach: Right to Left
1. Start with value

2.Find the exponent, , of the largest power of 2 that is smaller than .
(I.e., first power of 2 that can be subtracted without going negative)

3.For down to 0:

1.If

1. Write down a 1 (and move right)

2.

2.Else

1.Write down a 0 (and move right)

n

k n

k

2k ≤ n

n = n − 2k

Example: Convert 27 to binary 
(With the greedy approach)

• First power of 2 less than 27

• 16 ()

•

•

•

•

24

n = 27 − 16 = 11

n = 11 − 8 = 3

n = 3 − 2 = 1

n = 1 − 1 = 0

Place
Value  128 64 32 16 8 4 2 1

Place
Value  27 26 25 24 23 22 21 20

Result 1 1 0 1 1

Arithmetic

Decimal Addition

Decimal Addition: Bunch of Rules

Decimal: 0 1 2 3 4 5 6 7

Rules just “encode” moving right on the number line
Ex: 1+2

Decimal Addition: Bunch of Rules

Decimal: 0 1 2 3 4 5 6 7

Rules just “encode” moving right on the number line
Ex: 1+2

Decimal Addition: Bunch of Rules

Decimal: 0 1 2 3 4 5 6 7

Rules just “encode” moving right on the number line
Ex: 1+2

Decimal Addition: Bunch of Rules

Decimal: 0 1 2 3 4 5 6 7

Rules just “encode” moving right on the number line
Ex: 1+2

Decimal Addition: Bunch of Rules

Decimal: 0 1 2 3 4 5 6 7

Rules just “encode” moving right on the number line
Ex: 1+2

Binary Addition Rules

• Condensed

• No ones: 0+0+0 = 00

• One one: 0+0+1 = 01

• Two Ones: 0+1+1 = 10

• Three Ones: 1+1+1 =11

Binary Addition Rules: Fully Elaborated
0+ 0+ 0 = 00

0+ 0+ 1 = 01

0+ 1+ 0 = 01

0+ 1+ 1 = 10

1+ 0+ 0 = 01

1+ 0+ 1 = 10

1+ 1+ 0 = 10

1+ 1+ 1 = 11

Problem

• Add 4’b1010 + 4’b0011

Review: Operations on Booleans

Review: Boolean Logic Operations

LOGIC
OPERATION

COMMON
PROG. LANG.

SYMBOLS

FIRST-ORDER
LOGIC DIGITAL LOGIC

And &&, and ∧ *
(multiplication)

Or ||, or ∨ +

Not / Negation !, not ¬ /  
(also line over)

Gates: Conceptual Machines for
Boolean Ops

LOGIC
OPERATION

COMMON
PROG. LANG.

SYMBOLS

FIRST-ORDER
LOGIC DIGITAL LOGIC GATE

And &&, and ∧ *
(multiplication) See here

Or ||, or ∨ + See here

Not / Negation !, not ¬ /  
(also line over) See here

https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/Inverter_(logic_gate)

Gates: Machines for Boolean Ops
(A look at “Computer Engineering for Babies”)

https://computerengineeringforbabies.com/

For Thursday

• Read Chapter 1: 1.1-1.5

• Complete the questions (Canvas) before 11am (not officially due)

• Future prep work questions are 11:59pm on Mondays

• Reading is almost all of Chapters 1-7. Can work ahead!

Homework #1 Posted!
Dropbox available on Thursday (28th)
Due next Wednesday (September. 3rd)

What’s the operation?

• Consider the following
problems:

• 123 ? 10 = 3

• 7 ? 10 = 7

• 29 ? 10 = 9

• Consider the following
problems:

• 123 ? 100 = 23

• 7 ? 100 = 7

• 29 ? 100 = 29

Why is that important?

• We’ll often work with fixed-width numbers

• Ex: our rules of addition are just for 1 column of digits

• Multi-digit numbers are handled via chaining together fixed width operations

• Truncation to fixed width numbers is a special case of modular arithmetic
(which has some cool properties)

Fixed Width / Truncation in Decimal

• We’ll often work with fixed-width numbers

• Ex: our rules of addition are just for 1 column of digits

• Multi-digit numbers are handled via chaining together fixed width operations

• Truncation to fixed width numbers is a special case of modular arithmetic
(which has some cool properties)

What’s the operation?

• Consider the following
problems:

• 123 ? 10 = 3

• 7 ? 10 = 7

• 29 ? 10 = 9

• Consider the following
problems:

• 123 ? 100 = 23

• 7 ? 100 = 7

• 29 ? 100 = 29

What’s the operation?

• What is the 1 digit
result of:

• 122 + 1 = 3

• 3+4 = 7

• 15+14 = 9

• What is the 2 digit
result of:

• 3+120 = 23

• 2+5 = 7

• 28+1 = 29

Modular Arithmetic & The Number Line 
(Binary, 3-bit)

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

What’s 1+2?

Modular Arithmetic & The Number Line 
(Binary, 3-bit)

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

What’s 6+2?

Challenge: Describe the result of n+7

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

Challenge: How can you emulate n-2?

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

The Magic of Modular Arithmetic: 
Addition can emulate subtraction!

000 001 011 100010 101 110 111Binary:
Decimal: 0 1 2 3 4 5 6 7

2’s comp 
behavior: -4 —3 -2 -1

Consider the Upper Bit to be Negative

Place Value 
(Decimal) -4 2 1

Place Value 
In terms of Base -(22) 21 20

Consider the Upper Bit to be Negative

Place Value 
(Decimal) -4 2 1

Place Value 
In terms of Base -(22) 21 20

What is the decimal value of the 3-bit, 2’s complement numbers:
110
011

Consider the Upper Bit to be Negative

Place Value 
(Decimal) -4 2 1

Place Value 
In terms of Base -(22) 21 20

What is the 3-bit, 2’s complement representation of:
2
-4
-5

Hexadecimal

• Convenient, compact way to deal with binary

• Each hex digit = exactly 4 binary digits

https://en.wikipedia.org/wiki/Hexadecimal

