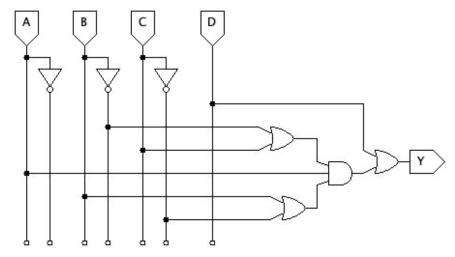
CSE 2600 - Homework 3A

Always show all work for full credit.


1. Determine the minimal expression (the Karnaugh map sense) for Y in:

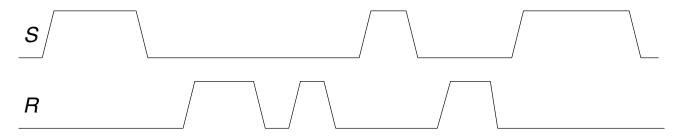
A	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

2. Determine the minimal expression (the Karnaugh map sense) for Y in (the Xs are "Don't Cares"):

A	В	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	X
0	1	0	0	1
0	1	0	1	X X
0	1	1	0	X
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

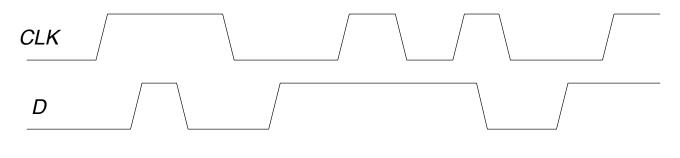
3. Given the circuit:

And the following data:

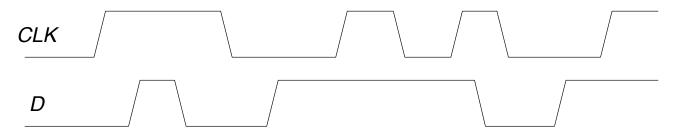

Gate	Minimum Delay (nS)	Maximum Delay (nS)
Inverter	3	7
2-input OR	7	10
2-input AND	7	11
3-input OR	10	12
3-input AND	9	13

Assuming all inputs change at the same time, what is the propagation delay (t_{pd}) ?

4. Using the circuit and assumptions from the prior part, what is the contamination delay (t_{cd}) ?


For all latch / flip-flop problems below, assume:

- Level-sensitive elements are active at high levels
- Edge sensitive elements are active on the rising edge
- 5. Given the input waveforms shown below, sketch the output, Q, of an *SR latch*.


Q

6. Given the input waveforms shown below, sketch the output, Q, of a *D latch*.

Q

7. Given the input waveforms shown below (same as used in the last problem), sketch the output, Q, of a *D flip-flop*.

Q

8. For the flip-flop shown below (Figure 3.8 of the text), *how would the behavior* change if the inverter's location were to be changed such that the clock was directly fed to the master and inverted to the slave D flip-flop? (That is, the figure below behaves as described in class/lecture. How would it behave if modified so the inverter's location was moved)

- 9. At a minimum, how many bits of memory are required to design a state machine that must count from 0-16?
- 10. At a minimum, how many bits of memory are required to design a state machine that requires n states (formula in terms of n)?
- 11. Assume the state machine for the traffic light state machine described in section 3.4.1 of the book uses a 5-second clock cycle, extend the state machine so that: 1) Lights are green for a minimum of 10 seconds and 2) Yellow lights continue to be 5s. (Any traffic can be ignored in the first 5s a light is green). Provide:
 - 1. An updated state diagram (Updated version of Figure 3.25). The start state should continue to be S0 (start (first 5s) of a green light phase in the A direction), it should continue to use the same approach to state encoding, and S0 should continue to use the code 0 (all zeros).
 - 2. An updated State Encoding (Table 3.2)
 - 3. An updated State Transition Table that includes the binary encoding (Table 3.4)
 - 4. An updated Output table that includes the Binary Encoding (Table 3.5)
 - 5. Updated equations for State variables and outputs
 - 6. And a JLS implementation of the machine using the provided file.