Always show all work for full credit.

1. Determine the minimal expression minimal (the Karnaugh map sense) for Y in:

A	В	С	Ý
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

2. Determine the minimal expression minimal (the Karnaugh map sense) for Y in:

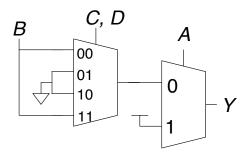
A	В	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

3. Determine the minimal expression minimal (the Karnaugh map sense) for Y in:

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

4. Determine the minimal expression minimal (the Karnaugh map sense) for Y in:

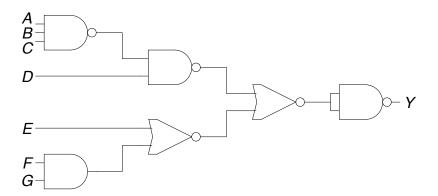
A	В	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0


- 5. Problems 1-4 used the same functions as problems 2-5 on Homework 2A. In what way are the equations optimal or minimal compared to the equations in Homework 2A?
- 6. Determine a minimal (the Karnaugh map sense) form of:

$$Y = BC + A\bar{B}\bar{C} + B\bar{C}$$

7. Determine a minimal (the Karnaugh map sense) form of:

$$Y = \overline{A + \overline{A}B + \overline{A}\overline{B}} + \overline{A + \overline{B}}$$


8. Give the minimized (the Karnaugh Map sense) Boolean equation for the function performed by the multiplexors below. Note that B is connected to the inputs to the leftmost multiplexor. The "T" shape on the right multiplexor's input indicates a voltage source (that is, a logic 1) and the triangle on the left multiplexor's input represents a ground (that is, a logic 0):

- 9. Use an 8-to-1 Multiplexor to implement the same function from the previous problem.
- 10. Assuming the propagation delays are:

Gate	t_{pd} (ps)
NOT	15
2-input	20
NAND	
3-input	30
NAND	
2-input NOR	30
3-input NOR	45
2-input AND	30
3-input AND	40
2-input OR	40
3-input OR	55
2-input XOR	60

Determine the propagation delay of:

- 11.1 Complete the full truth table for the multiplexor with enable (described on assignment page):
- 11.2 Find the full, canonical sum-of-products equation for it.
- 11.3 (JLS Submission)
- 11.4 What is the Propagation delay in JLS (using default delays)? (You can right-click on gates and select "Change Timing" to examine their default timing values, but do not change them).
- 11.5 Give the minimized (the Karnaugh Map sense) Boolean equation for the function.
- 11.6 (JLS Submission)
- 11.7 What is the Propagation delay in JLS (using default delays) of the minimized circuit?

11.8 Compare and contrast the minimal (K-Map) version with the full Sum-of-Products version.